Immobilization of Biomolecules (Rubisco) by Self-Assembled Nanostructures

Nanostructures that enhance the stability of biocatalysts that permit them to be utilized in scalable CO2 conversion processes

The Need

Carbon dioxide (CO2) and methane (CH4) are the two most abundant greenhouse gasses, trapping thermal radiation close to the earth's atmosphere and contributing to climate change. These two gasses contributed up to 92% of all the greenhouse gas emissions in 2015 (epa.gov). From an industrial perspective, carbon dioxide provides a very abundant source of carbon for the synthesis of a large range of useful chemicals. Plants and microbes are capable of efficiently converting CO2 into sugars and other compounds, but these processes are difficult to replicate in an industrial context. In addition, existing methods of converting CH4 into methanol are very energy consuming. To bring biomolecule emission conversion into an industrial setting, a scalable housing for biocatalysts is essential.

The Technology

The Ohio State University researchers, led by Dr. Jonathan Parquette, developed nanostructures that enhance the stability of biocatalysts that permit them to be utilized in scalable CO2 conversion processes. The invention consists of a nanotube scaffolding for the biocatalyst to reduce the energy required to bring reactants together for product formation. This cell-free catalytic system can better withstand the harsh conditions and requires less maintenance. As the world's most abundant enzyme, RubisCO was the first biocatalyst incorporated with this invention. Functionality has been demonstrated with better stability and/or resilience in comparison to free from.

Commercial Applications

  • Emission reduction
  • Chemical production
  • Biotechnology
  • Therapeutics

Benefits/Advantages

  • RubisCO has a conversion turnover of about 5 to 10 molecules per second
  • Carbonic anhydrase (CA) has a turnover of up to 600,000 molecules per second
  • Stable cell-free system
  • Produces only the desired products
  • Scalable housing for therapeutic or biocatalyst enzyme delivery
PDF

Loading icon