# of Displayed Technologies: 3 / 3

Applied Category Filter (Click To Remove): Biomaterials


Categories

Integrally Joined Stainless Steel-NiTi Medical Devices
TS-050057 — A method for manufacturing surgical tools and implants with strong, gapless joints between NiTi (Nitinol) and stainless steel to capitalize on the best properties of both materials.
NiTi (Nitinol) is widely accepted and used for medical devices such as surgical tools and implants due to its biocompatibility and unique thermal-mechanical properties which provide super-elastic or shape memory responses. However, there are currently no commercial solutions for joining of NiTi to…
  • College: College of Engineering (COE)
  • Inventors: Panton, Boyd; Dapino, Marcelo; Gingerich, Mark; Headings, Leon; Morris, Jennifer
  • Licensing Officer: Zinn, Ryan

Integration of smart materials into surgical tools and medical devices using vaporizing foil actuator technology.
TS-045092 — Shape memory alloys are metals that "remember" their original shape when deformed and can return to their initial shape when heated. These shape memory alloys cannot currently be welded to other alloys, which significantly limits their use. Current state-of-the-art methods of joining sha…
  • College: College of Engineering (COE)
  • Inventors: Panton, Boyd; Daehn, Glenn; Vivek, Anupam
  • Licensing Officer: Zinn, Ryan

Carbide bonded Graphene Coating
TS-015271 — A facile approach for obtaining carbide-bonded graphene coatings on a variety of metallic and nonmetallic substrates.
Despite the many attractive features of graphene, the lack of atomic bonds between graphene and substrates and among graphene nanosheets has limited its potential applications. Although theoretical considerations predict that covalent bonds between graphene nanosheets would significantly improve s…
  • College: College of Engineering (COE)
  • Inventors: Lee, L James; Huang, Wenyi; Yu, Jianfeng
  • Licensing Officer: Norris, Francis "Frank"

Loading icon