# of Displayed Technologies: 7 / 7

Applied Category Filter (Click To Remove): Drug Delivery


Categories

Method to improve efficiency and specificity of human tumor targeting and elimination by using a combination of split & splice protein toxins and oncolytic viruses
TS-040838 — Novel strategy to improve efficiency and specificity of tumor treatment via combinative use of a split & splice protein toxin and oncolytic virus.
In combating malignancies as complex as cancer, researchers and clinicians have created a diverse set of strategies to reduce tumor burden. Oncolytic viruses (OVs) have emerged as a promising means of treating this disease due to their potential to selectively target and effectively kill cancer ce…
  • College: College of Arts & Sciences
  • Inventors: Kudryashov, Dmitri; Kudryashova, Elena
  • Licensing Officer: Flammang, Ann Marie

Novel compositions of nanoparticles for nucleic acid therapeutic delivery
TS-040254 — Novel lipid-based nanoparticles that utilize a surfactant to improve self-assembly and stability. Finalized particles can be used for delivery of nucleic acids such as oligonucleotides and plasmid DNA.
Lipid-based nanoparticles (LNPs) have been extensively utilized in nucleic acid delivery. However, there are a number of challenges associated with LNP formulation. It is difficult to make sub-100-nm LNPs with a high nucleic acid concentration by traditional self-assembly methods. LNP synthesis ty…
  • College: College of Pharmacy
  • Inventors: Lee, Robert
  • Licensing Officer: Flammang, Ann Marie

Self-assembled 3D RNA Cage Nanoparticles with Precise Shape and Size for Applications in Medical Sciences, Materials Sciences, Engineering and Nanotechnology
TS-039545 — Self-assembling, highly stable RNA cages amenable to custom functionalization and cargo delivery
One of the primary challenges in therapeutic development is cheap, efficient, and safe drug delivery to specific target tissues. To better target specific tissues, RNA nanotechnology has been progressively applied to generate predefined architectures via self-assembly of modular building blocks. N…
  • College: College of Pharmacy
  • Inventors: Guo, Peixuan; Jasinski, Daniel; Khisamutdinov, Emil; Li, Hui
  • Licensing Officer: Flammang, Ann Marie

Immobilization of Biomolecules (Rubisco) by Self-Assembled Nanostructures
TS-037787 — Nanostructures that enhance the stability of biocatalysts that permit them to be utilized in scalable CO2 conversion processes
Carbon dioxide (CO2) and methane (CH4) are the two most abundant greenhouse gasses, trapping thermal radiation close to the earth's atmosphere and contributing to climate change. These two gasses contributed up to 92% of all the greenhouse gas emissions in 2015 (epa.gov). From an industrial pe…
  • College: College of Arts & Sciences
  • Inventors: Parquette, Jonathan; Satagopan, Sriram; Sun, Yuan; Tabita, Fred
  • Licensing Officer: Flammang, Ann Marie

Thermogenic Biologicals Treatment of Obesity and Improvement of Insulin Resistance
TS-037746 — Innovative thermogenic biologicals, methods of delivery, and combinational therapy for the treatment of abdominal obesity
Obesity as a result of an increase in intra-abdominal (or visceral) fat is an independent risk factor for major diseases such as type 2 diabetes and cardiovascular diseases due to increases in insulin resistance and chronic inflammation. Accumulation of intra-abdominal fat, even in non-­obese …
  • College: College of Education & Human Ecology
  • Inventors: Ziouzenkova, Ouliana; Parquette, Jonathan
  • Licensing Officer: Flammang, Ann Marie

Lipid Nanoparticles for Therapeutic Delivery of Anti-miRs and miRs
TS-037707 — An efficient delivery vehicle for therapeutic oligonucleotides with high efficiency.
MiRNA or miRs are small non-protein coding RNA which are capable of regulating mRNAs in multiple biological pathways, including those involved in cancer development and wound healing. Antagomirs, also known as anti-miRs, inhibit miR activity and could be used to develop therapeutics for interventi…
  • College: College of Pharmacy
  • Inventors: Lee, Robert
  • Licensing Officer: Flammang, Ann Marie

Antisense Morpholino Treatment to Increase SMN Levels and Treat Spinal Muscular Atrophy
TS-037648 — A treatment for spinal muscular atrophy.
Spinal Muscular Atrophy (SMA) is caused by deletion or mutation of SMN1 and retention of SMN2, this in turn leads to reduced levels of the full SMN protein. SMA is the second leading cause of neuromuscular disease, and many people living with SMA need round-the-clock care from their families and a…
  • College: College of Medicine (COM)
  • Inventors: Burghes, Arthur; Porensky, Paul
  • Licensing Officer: Flammang, Ann Marie
PDF

Loading icon