# of Displayed Technologies: 5 / 5

Applied Category Filter (Click To Remove): Materials


Categories

Integrally Joined Stainless Steel-NiTi Medical Devices
TS-050057 — A method for manufacturing surgical tools and implants with strong, gapless joints between NiTi (Nitinol) and stainless steel to capitalize on the best properties of both materials.
NiTi (Nitinol) is widely accepted and used for medical devices such as surgical tools and implants due to its biocompatibility and unique thermal-mechanical properties which provide super-elastic or shape memory responses. However, there are currently no commercial solutions for joining of NiTi to…
  • College: College of Engineering (COE)
  • Inventors: Panton, Boyd; Dapino, Marcelo; Gingerich, Mark; Headings, Leon; Morris, Jennifer
  • Licensing Officer: Zinn, Ryan

High-strength/high-ductility magnesium sheet alloy for room-temperature forming
TS-048065 — A new magnesium alloy designed using computational thermodynamic and kinetic models, which possesses optimal mechanical and formability performance suitable for industrial applications
Magnesium (Mg), the lightest structural metal, and its alloys, with their high specific strength and low density, are promising lightweight materials for industrial applications in automotive, aerospace, and electronic sectors. A 2019 report by Business Communications Company (BCC) Research highli…
  • College: College of Engineering (COE)
  • Inventors: Luo, Aihua (Alan); Shi, Renhai
  • Licensing Officer: Zinn, Ryan

Integration of smart materials into surgical tools and medical devices using vaporizing foil actuator technology.
TS-045092 — Shape memory alloys are metals that "remember" their original shape when deformed and can return to their initial shape when heated. These shape memory alloys cannot currently be welded to other alloys, which significantly limits their use. Current state-of-the-art methods of joining sha…
  • College: College of Engineering (COE)
  • Inventors: Panton, Boyd; Daehn, Glenn; Vivek, Anupam
  • Licensing Officer: Zinn, Ryan

Ultrasonic Resistance Spot Welding Process and Apparatus
TS-041781 — An improvement to ultrasonic and resistance spot welding
Ultrasonic welding is widely used in the electronics industry to weld together wiring in delicate circuits and on microcircuits. It is also used in the automotive industry, medical industry, and packaging industry, often to weld dissimilar materials or plastics. The major advantages in ultrasonic …
  • College: College of Engineering (COE)
  • Inventors: Liu, Xun; Benatar, Avraham; Kimchi, Menachem
  • Licensing Officer: Zinn, Ryan

Novel Method for Welding of High-Strength Aluminum Alloys
TS-014735 — A cost-effective method that drastically increases high-strength aluminum alloys' resistance to environmental degradation.
Manufacturers seek low-density, high-strength metals that can withstand environmental stress. High-strength aluminum alloys (AAs) are increasingly used for light-weighting in automotive and aerospace structure applications, but welds with such alloys are susceptible to environmental degradation, w…
  • College: College of Engineering (COE)
  • Inventors: Zhang, Wei; Borchers, Tyler
  • Licensing Officer: Zinn, Ryan

Loading icon