# of Displayed Technologies: 10 / 17

Applied Category Filter (Click To Remove): Materials/Chemicals


Categories

Use of Cerium in Neutralizing Iron Impurity in Aluminum Alloys
TS-065429 — Iron is the main and most detrimental impurity in most industrial casting aluminum alloys. Iron content in aluminum alloys is limited, up to 0.1 weight% in some alloys.
Iron is a major impurity element in primary and secondary (scrap) aluminum alloys. It is difficult to remove during melting and casting. Controlling the formation of Al-Fe-based intermetallics via alloying is key to leveraging the mechanical properties of aluminum alloy products. The current struc…
  • College: College of Engineering (COE)
  • Inventors: Luo, Alan; Cinkilic, Emre; Moodispaw, Michael
  • Licensing Officer: Zinn, Ryan

Highly Efficient Light Olefin Selectivity & Production Process
TS-065422 — Light olefins, such as ethylene and propylene, are essential building blocks in the petrochemical industry and have a wide range of uses in various applications. The most common uses for olefins include polymers, chemical intermediates, solvents, rubber, and nanomaterials, among others.
Although Light olefins are used globally in many products, the catalytic processes to produce them are energy intensive with a large carbon footprint and the production of greenhouse gases and water pollution. As a result, substantial efforts are being made in the industry to develop more sustain…
  • College: College of Engineering (COE)
  • Inventors: Ozkan, Umit; Gunduz, Seval; Kim, Jaesung
  • Licensing Officer: Zinn, Ryan

Three-dimensional cellular automation codes for solidification microstructure and porosity simulation of multi-component alloys
TS-063911 — Porosity formation during the solidification of aluminum-based alloys, induced by hydrogen gas and alloy shrinkage, presents a significant challenge for industries relying on high-performance solidification products such as castings, welds, and additively manufactured components. This issue advers…
  • College: College of Engineering (COE)
  • Inventors: Luo, Alan; Gu, Cheng
  • Licensing Officer: Zinn, Ryan

High-entropy AlCrTiV alloys
TS-063365 — Experience the future of materials technology with our high-entropy AlCrTiV metal alloy—a revolutionary solution that reshapes the possibilities in engineering and manufacturing. Elevate your products to new heights of performance, efficiency, and sustainability with our innovative alloy. For a closely related technology, please visit https://oied.osu.edu/find-technologies and type "T2021-261" in the search field.
In various industries, from aerospace to manufacturing, the pursuit of materials with exceptional mechanical properties coupled with low weight is unending. Conventional alloys often trade off one aspect for another, leaving a gap in the market for a metal alloy that seamlessly integrates strength…
  • College: College of Engineering (COE)
  • Inventors: Luo, Alan; Huang, Xuejun; Sun, Weihua
  • Licensing Officer: Zinn, Ryan

Metal Matrix Composites Reinforced by High Entropy Alloys
TS-063364 — Experience the future of advanced materials—our metal matrix composites offer a revolutionary approach to meeting the demands of modern industries. Elevate your products, enhance performance, and reduce costs with our groundbreaking technology. For a closely related technology, please visit https://oied.osu.edu/find-technologies and type "T2017-051" in the search field.
In the aerospace, defense, and automotive industries, there is a pressing demand for advanced materials that combine low weight, high strength, exceptional wear resistance, and superior high-temperature performance. Traditional methods using ceramic particles as reinforcements in aluminum matrix c…
  • College: College of Engineering (COE)
  • Inventors: Luo, Alan; Huang, Xuejun; Zhang, Jianyue
  • Licensing Officer: Zinn, Ryan

Surface barrier engineering using AlGaO/GaO
TS-063001 — A new method of surface barrier engineering that introduces a linearly graded (AlxGa1-x)2O3 cap layer. This improves the Schottky barrier at the surface which results in a higher breakdown field.
Ga2O3 is a promising ultra-widebandgap semiconductor with many applications in power switching and RF electronics. Realizing those improvements requires efficient field management design to prevent premature breakdown due to electric field crowding at the device edges. There is a need to develop t…
  • College: College of Engineering (COE)
  • Inventors: Rajan, Siddharth; Dhara, Sushovan
  • Licensing Officer: Zinn, Ryan

pH-sensitive inhibitor release system for corrosion protection
TS-062835 — Coatings are broadly used to protect metallic structures from corrosion. However, aggressive acidic and alkaline conditions can both develop locally on the coated metal surface due to corrosion, leading to the failure of the coated structure. Commonly used smart coatings use a timed release of spe…
  • College: College of Engineering (COE)
  • Inventors: Li, Chao; Frankel, Gerald "Jerry"; Guo, Xiaolei
  • Licensing Officer: Zinn, Ryan

Heteroatom doped Carbon Nanostructures for Electrocatalytic Chlorine and Bromine Production
TS-062692 — Chlorine is used in production of many products, such as many polymers like polyvinyl chloride, polyurethanes and chloroaromatics. It is also used extensively in pharmaceuticals, pesticides, fiber optics, hypochlorite bleaches, and other commodities. However, the current method of producing chlori…
  • College: College of Engineering (COE)
  • Inventors: Ozkan, Umit; Jain, Deeksha; Mamtani, Kuldeep
  • Licensing Officer: Zinn, Ryan

Activity Enhancement of Perovskite-Type Cathode Material
TS-044391 — A new ammonia production technology using an oxygen ion conductive solid oxide electrolyte cell (SOEC) reactor and a novel cathode material.
Ammonia is utilized in a variety of industries with 80% of produced ammonia used for fertilizer production. Most commercial ammonia is produced using the Haber-Bosch (HB) process, which requires high temperatures and pressures, resulting in high operational/production costs. The process typically us…
  • College: College of Engineering (COE)
  • Inventors: Ozkan, Umit; Deka, Dhruba Jyoti; Gunduz, Seval
  • Licensing Officer: Zinn, Ryan

Conforming to Interface Structured Adaptive Mesh Refinement (CISAMR)
TS-039030 — The Conforming to Interface Structured Adaptive Mesh Refinement (CISAMR) automated modeling technique creates high quality periodic meshes for modeling materials with complex microstructures.
Development of models for materials with complex microstructures is time consuming and expensive. Also, different commercial modeling software tools have various standards, which makes importing and exporting between modeling systems problematic and difficult. Dr. Soheil Soghrati at The Ohio St…
  • College: College of Engineering (COE)
  • Inventors: Soghrati, Soheil
  • Licensing Officer: Zinn, Ryan

Show More Technologies

Loading icon