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ABSTRACT
Recent advancement in Frequency Domain Duplexing (FDD)

enables wireless systems to use different frequency bands

for uplink and downlink communication without explicit

channel feedback information. The current state-of-the-art

approaches either estimate the underlying variables in the

uplink channel or use an artificial neural network archi-

tecture to estimate the downlink channel from the uplink

channel. However, such techniques fail to perform accurately

in multipath-rich environments and environments unseen

during training. This paper presents HORCRUX, a physics-
based machine learning system that can be generalized and

scaled to any environment while predicting downlink chan-

nels with high accuracy and applies to single-antenna and

MIMO systems. Our approach uses multiple neural networks,

trained on the standard wireless channel model, firstly to

divide the uplink channel into smaller sub-channels and sec-

ondly to generate coarse estimates for the variables for each

of the underlying sub-channels. Finally, we use an efficient

and fast optimization framework to get fine-tuned variable

estimates to predict the downlink channel. We implement

our system using software-defined radios. Our evaluations

show that HORCRUX performs ∼8 dB better than state of

the art in downlink channel prediction accuracy in diverse

wireless environments.
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1 INTRODUCTION
In recent years, advancements in wireless technologies have

enabled high-throughput communication systems with the

help of MIMO (Multiple Input Multiple Output). A key ap-

proach to increase the wireless system capacity is through

the use of Multi-User MIMO (MU-MIMO) [34, 63] and Mega-

MIMO [30, 33, 36]. These technologies allow multiple users

to be served simultaneously by a single base station using

multiple antennas. In applications like cellular networks,

FDD [5] methods are used in conjunction with MIMO to

simultaneously receive and transmit on different frequency

bands. However, due to the lack of channel reciprocity across

frequency bands, base stations require channel feedback

from the clients to perform signal processing and modu-

lation. This technique of channel feedback introduces ex-

pensive overhead and is unsustainable for MIMO systems

[11, 12, 15, 22, 28, 35, 49, 58, 60].

State-of-the-art approaches such as R2F2 [54], OptML

[11], and FIRE [35] addressed this challenge by removing

the requirement of channel feedback and estimating the

downlink channel based on the measured uplink channel.

R2F2 and OptML are motivated by the fact that the under-

lying frequency-independent channel variables (multipath

distance, attenuation, etc.) remain the same for both uplink

and downlink channels. R2F2 proposes a novel signal process-

ing technique to estimate the uplink’s underlying parameters

and thereby estimate the downlink channel. However, such

a technique can be computationally expensive if the number

of multipaths and antenna components is large. OptML [11],

on the other hand, proposes a fast neural-network-based

approach to estimate the channel variables and predict the

downlink channel. FIRE [35] uses an end-to-end variational

autoencoder (VAE) to estimate the downlink channel from

https://github.com/Avishek3/HORCRUX
https://doi.org/10.1145/3636534.3649343
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Figure 1: HORCRUX enables cross band channel pre-
diction with high accuracy and scalability across en-
vironments, antenna sizes, and frequency bands. [H -
High, L - Low, M - Medium]

the uplink channel. However, both OptML and FIRE estimate

channels with low accuracy in multipath-rich environments

if the training set differs from the testing environment. Such

low accuracy in channel estimates hurts MIMO gains for

multi-user settings.

To address this challenge, we introduce HORCRUX, as

shown in Fig. 1, which achieves high channel estimation ac-

curacy with zero feedback across any wireless environment

and can be utilized across a single-antenna to amulti-antenna

system. This work is motivated by the design framework of

our previous work OptML [11].

MIMO systems take advantage of the multipath-rich envi-

ronment to improve performance and capacity. Multipaths

arriving at a separation of
𝑐
𝑏𝑤

(𝑐 is the speed of light and

𝑏𝑤 is bandwidth) can be resolved accurately. Previous ef-

forts [11, 54] are inspired by this physics-guided intuition,

and the resulting systems are trained based on understanding

and resolving the underlying physical environment variables.

For example, assume wireless channel of 20 MHz bandwidth

12 multipaths can be resolved within the delay spread of

1-200 meters [11]. In a particular environment, we measure

the relationship between the observed wireless channels at

different positions by a metric called path loss correlation.

We used Pearson correlation [16] of the absolute values of

the channel to calculate the path loss correlation. A realistic

everyday environment should have uncorrelated path loss

because of different combinations of multipaths (number of

multipaths and their distances). Fig. 2 shows the relationship

of path loss correlation with the underlying physical environ-

ment. Path loss of the channels observed is highly correlated

(∼0.7) when there is less variation in multipath and distance.

However, with more environmental variation, the channels

observed are uncorrelated (∼0.2-0). It is to be noted that

most channels in a realistic environment have uncorrelated

path loss. In this work, we use the path loss correlation as a

metric to estimate the diversity of wireless channels in ex-

perimented environments and clarify the performance gain

of HORCRUX over the state-of-the-art systems.

State-of-the-art systems either use signal processing tech-

niques (R2F2 [54]) or use physics-guided neural models to es-

timate these underlying multipaths (OptML [11]). However,

our experiments show that such systems fail to perform ac-

curately under uncorrelated path loss environments as they

can only resolve up to 2-3 combinations of multipaths and

do not perform well in unseen environments. A more recent

effort FIRE [35] leverages a generative process with a VAE

architecture for this purpose. However, it has been shown

that such ideas do not work well if there is variability in the

training data [61]. Specifically, our experiments show that if

the wireless environment is complex, i.e., if the channel path

losses are uncorrelated, FIRE fails to train accurately, result-

ing in erroneous estimations. Again, like OptML and R2F2,

FIRE does not generalize to unseen environments. Fig. 3 of-

fers a brief preview of the performance gain of HORCRUX

against OptML, FIRE, and R2F2 under varying wireless en-

vironments. We observe that these contemporary systems

perform poorly in environments with uncorrelated channels.

However, HORCRUX continues to perform accurately under

different wireless environments and outperforms state-of-

the-art by ∼8 dB gain in channel prediction accuracy when

wireless channels are uncorrelated.

In this work, we propose a novel hierarchical approach

(HORCRUX) that first subdivides the uplink channel into

smaller sub-divisions based on underlying physical parame-

ters of the channel and then utilizes a neural network model

to estimate distances (motivated by OptML) on each sub-

division. Finally, we use a fast and efficient optimization on

each sub-division to estimate the downlink channel. A no-

table aspect of our framework is that the data we use to train

our neural models is simulated (akin to a digital twin) and

yet grounded by the underlying physical laws of the wireless

channel. Unlike prior efforts, this implicit form of grounding

[10] enables HORCRUX to generalize beyond the simulated

environment it was trained on. We implement HORCRUX on

WARP radios and compare its performance with FIRE [35],

OptML [11], and R2F2 [54] in different indoor and outdoor

test beds and simulations. Fig. 4 shows comparative results

demonstrating HORCRUX outperforms the state-of-the-art.

Applications: Apart from widespread application in a multi-

antenna base station for wireless systems, the zero feedback-

based FDD system that HORCRUX subscribes to can have a

significant impact in systems with a single antenna (smart

home devices) or devices with antennas arranged in a ran-

dom fashion (laptop or access points) that want to use differ-

ent bands for uplink and downlink based on data-traffic and

SNR (signal to noise ratio). Contemporary efforts, such as

the FIRE architecture, will fail to support such variability in
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Figure 2: Path loss correlation in
an environment decreases with an
increase in the number of mul-
tipath components and their dis-
tances. Channel is highly uncorre-
lated when there are more than 2
multipaths. Everyday indoor and
outdoor environments have uncor-
related channels.
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Figure 3: State-of-the-art predicts
downlink channel with similar accu-
racy as HORCRUX in highly corre-
lated path loss environments. How-
ever, in uncorrelated environments,
HORCRUX enjoys ∼8 dB gain com-
pared to other systems. HORCRUX
does not require any training in that
particular environment.
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Figure 4: HORCRUX performs signifi-
cantly better than the state-of-the-art
in all themetrics. HORCRUXachieves
∼8 dB gain in channel prediction ac-
curacy and SINR in MU-MIMO and
∼2dB improvement in beamforming
gain compared to the state-of-the-art.

antenna orientation. HORCRUX, as it operates on a single

antenna basis, can support all such applications.

Our paper makes the following contributions:

• We present a novel physics-guided hierarchical model

to divide uplink channels into sub-channels based on

multipath distances.

• HORCRUX utilizes a neural network model to esti-

mate channel parameters in each sub-division. The

data we use to train our neural models is simulated

and grounded by the underlying physical laws of the

wireless channel.

• To the best of our knowledge, we are the first to enable

cross band channel prediction that can be generalized

and scaled easily to any wireless environment without

prior knowledge.

2 BACKGROUND
2.1 Channel Basics
In wireless communication, the receiver receives the com-

posite signal from the transmitter after it has traveled across

paths with different distances (𝑑), attenuations (𝑎), and reflec-

tions (𝜙). This composite effect of the environment that the

signal undergoes is denoted as the wireless channel (ℎ). Thus,

for a signal transmitted at frequency 𝑓𝑖 (wavelength 𝜆𝑖 ), the

multipath channel (ℎ) can be represented as follows [11, 52]:

ℎ𝑖 =

𝑁∑︁
𝑛

𝑎𝑛𝑒
− 𝑗2𝜋𝑑𝑛

𝜆𝑖
+𝑗𝜙𝑛

(1)

where 𝑁 is the number of multipaths, and 𝑖 is the subcar-

rier. Thus, for a single antenna, a multipath channel can be

described by a set of 3-tuples, {(𝑑, 𝑎, 𝜙)} [11].

2.2 MIMO
MIMO systems exploit the multipath environment to simul-

taneously send and receive multiple data streams. For mas-

sive MIMO, the base station composes multiple antennas (𝐾 )

which talk with multiple clients𝑀 (𝑀 < 𝐾 ) at the same time

[37]. The data stream transmitted by the base station needs

to be precoded to eliminate interference from other clients.

Thus, the received signal can be expressed as

y = HTWs + n (2)

where n is noise, s is the 𝑀 × 1 vector of the transmitted

signal, and H is the 𝐾 ×𝑀 channel matrix (each antenna of

the base station to each client). Each client is assumed to have

a single antenna for simplicity. W is the 𝐾 ×𝑀 precoding

matrix. Similar to [35], in this work, we have used zero-

forcing precoding technique [57]. Zero-forcing is a standard

precoding technique where W = H
′
, where H

′
is the right

pseudo-inverse of the channel matrix H. Thus, it is essential

to estimate the channel accurately. Otherwise, the clients

will suffer from interference and can decrease the data rate

and SINR (signal-to-interference-plus-noise ratio). In this

work, we have used SINR as one of the metrics to evaluate

HORCRUX on the MU-MIMO setup.

2.3 OptML Primer
OptML [11] is one of the state-of-the-art methods that en-

able a device having single or randomly arranged antenna

elements to predict the channel to a client in frequency band

𝐹1 based on the uplink channel observed from the client in

frequency band 𝐹2. To achieve that goal, authors develop

a method for producing rough estimates of the distances

of multiple paths by comparing the characteristics of the
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detected channel with those created by signals that have

traveled different distances.

𝑃 (𝑑 |ℎ) = | |
𝐼∑︁
𝑖

ℎ𝑖𝑒
𝑗2𝜋𝑑

𝜆𝑖 | |2 (3)

For a channel ℎ measured over I sub-carriers, let ℎ𝑖 repre-

sent the channel at wavelength 𝜆𝑖 . Then, the likelihood of

ℎ containing a path from a distance 𝑑 can be computed by

Eq. 3 [11]. The distances with large values give the coarse

estimate of the multipaths.

0 50 100 150 200
distance (m)

0.0

0.2

0.4

0.6

0.8

P(
d/

h)

Actual
Predicted

Figure 5: OptML fails to estimate all themultipath com-
ponents. This results in erroneous channel estimation.

2.3.1 Neural Network Distance Estimator (NNDE). OptML

uses a fully connected neural network to estimate the ini-

tial distance guesses. The input to the network is the uplink

channel, and the output is a sparse vector containing the

likelihood of the multipath components from different dis-

tances (ranging from 0 to 200 m) being a part of the channel.

The neural net is trained on simulated data governed by

the channel model as mentioned in Eq. 1. However, such

a simplified network can, at most, estimate 2-3 multipaths

using a single antenna and often underestimates the number

of paths affecting the channel. Fig. 5 shows OptML cannot

estimate all the components correctly.

2.3.2 Optimization Framework. OptML leverages an opti-

mization framework to fine-tune the coarse estimates before

predicting the cross band channel. They propose that the

optimization can be framed in terms of {𝑑𝑛} (distance esti-
mates) as the other variables can be estimated based on the

least squares approach.

𝑂 ({𝑑𝑛}𝑁𝑛=1) = | |𝐻 − 𝐷𝐷 ′
𝐻 | | (4)

where𝐻 represents the channel observed on a single antenna,

𝐷 represents a matrix of size 𝐼×𝑁 , (𝐷𝑖,𝑛 = 𝑒
− 𝑗2𝜋𝑑𝑛

𝜆𝑖 ), where 𝐼 is

the number of subcarriers in the signal and 𝑁 is the number

of multipath components estimated by the NNDE. 𝐷
′
is the

pseudo-inverse, and 𝐷
′
𝐻 =

−→𝑎 (the complex attenuation

associated with each multipath component). Authors use a

differential evolution algorithm and limit the search space

within bounds ∼20 m around the coarse estimates. However,

the optimization becomes expensive with an increase in the

number of multipath components. Using multiple antennas,

OptML can resolve more paths but at the cost of computation

time.

3 HORCRUX DESIGN
In this section, we propose our system HORCRUX. As shown

in Fig. 6, HORCRUX takes the uplink channel as input and

feeds into the Neural Network Channel Divider (NNCD)

block. This block consists of parallel neural networks that

divide the input channel into sub-channels based on the

distances of the multipath components. The output from

the NNCD blocks is then passed into the Distance Estimate

Initiator block, which decides whether to initiate distance

estimation for that predicted sub-channel. Following this, we

introduce themini-Neural Network Distance Estimator block

(mNNDE), which contains parallel mNNDEs. These are simi-

lar to the NNDE introduced in OptML [11], however, simpler

and light-weighted as trained on smaller datasets. Each of

the mNNDEs focuses on a specific distance range and gives

coarse estimates of distances of multipath components from

that range. Then, HORCRUX uses the optimization frame-

work similar to OptML to fine-tune distance estimates so that

the channel based on the forecasted estimates closely fits

the observed channel. However, HORCRUX converges faster

as the bounds (Sec. 2.3.2) for each of the components are

minimal (∼4 m). Once converged, the estimates predict the

cross band channel using Eq. 4. The neural nets are trained

using simulated channel data on a single antenna system.

For multi-antenna, HORCRUX will run simultaneously on

each antenna.

Figure 6: HORCRUX system overview

3.1 Neural Network Channel Divider
Instead of using the input channel to estimate coarse dis-

tances, we propose to divide the input channel into smaller

subsections. This divide-and-conquer approach significantly

improves the performance of HORCRUX as each divided

channel has at most 1-2 multipath components (correlated
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channels) and can therefore be easily estimated by the mN-

NDE. Say, for example, for a wireless channel has four mul-

tipath components, we can represent Eq. 1 as

ℎ = 𝑎1𝑒
− 𝑗2𝜋𝑑

1

𝜆
+𝑗𝜙1︸         ︷︷         ︸

Zone 1

+

Zone 2︷         ︸︸         ︷
𝑎2𝑒

− 𝑗2𝜋𝑑
2

𝜆
+𝑗𝜙2 +𝑎3𝑒

− 𝑗2𝜋𝑑
3

𝜆
+𝑗𝜙3︸         ︷︷         ︸

Zone 3

+

Zone 4︷         ︸︸         ︷
𝑎4𝑒

− 𝑗2𝜋𝑑
4

𝜆
+𝑗𝜙4

(5)

As shown in Eq. 5, the purpose of the NNCD block is to

divide the input channel ℎ into separate zones. Each zone

has a different neural network (𝑁𝑁𝐶𝐷𝑖 ) as shown in Fig. 6.

The input to these NNCDs is the observed channel ℎ, and

the output is the channel (ℎ𝑖 ) for that particular zone.

Figure 7: HORCRUX NNCD Block performance on a
typically observed channel. NNCD can accurately di-
vide the channel into corresponding zones. Only the
real part of the channel is plotted for simplicity.

Physics-Guided Zone Division: The question is, how does

one design the division of zones? To answer, we leverage the

physics of the wireless environment.

i) The channels with multipath components of similar

distances have a high probability of similar responses.

ii) The multipath components affecting the channel can

be resolved based on the channel’s bandwidth (𝑐/𝑏𝑤 ).

Thus, for example, for a channel with 20 MHz bandwidth,

we can resolve multipath components with distances (>15

m) apart. Therefore, for simplicity, we introduce eight zones

for a 20 MHz channel and a maximum delay spread of 200 m.

Each zone has a distance range of 25 m (>𝑐/𝑏𝑤 ), i.e., 𝑁𝑁𝐶𝐷1

divides the channel into sub-channel formed by multipath

components of distances [0𝑚, 25𝑚), 𝑁𝑁𝐶𝐷2: [25𝑚, 50𝑚)

and similarly 𝑁𝑁𝐶𝐷8: [175𝑚, 200𝑚). We assume that each

zone has at most 1-2 multipath components. This assumption

makes it easier to train each of the 𝑁𝑁𝐶𝐷𝑖 blocks accurately,

or it will try to fit noise without any multipath.

Fig. 7 shows the performance of the NNCD block for a

typically observed channel. The observed channel consists of

8 multipath components (1 from each Zone), as shown as 𝑑

in the figure. The 𝑁𝑁𝐶𝐷𝑖 blocks take this observed channel

as an input and divide the channel into the corresponding

sub-division. As you can see in the figure, 𝑁𝑁𝐶𝐷1 predicts

the sub-channel formed by the multipath component from

Zone 1 (0-25 m), i.e., 13.79 m. Similarly, the rest of 𝑁𝑁𝐶𝐷𝑖
blocks perform their channel division. In Fig. 7, for simplicity,

we have shown the prediction of 𝑁𝑁𝐶𝐷1, 𝑁𝑁𝐶𝐷2, 𝑁𝑁𝐶𝐷7,

𝑁𝑁𝐶𝐷8 only. As you can see, our channel prediction is near

identical to the actual subdivided channel.

As mentioned, the NNCD blocks are separately trained on

simulated channel data. Fig. 8 shows the prediction accuracy

of each of the 𝑁𝑁𝐶𝐷𝑖 blocks. Similar to [35], we define

channel prediction accuracy as

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑑𝐵) = −10𝑙𝑜𝑔10
( | |𝐻 − 𝐻𝑔𝑡 | |2

| |𝐻𝑔𝑡 | |2

)
(6)

where 𝐻 is the predicted sub-channel and 𝐻𝑔𝑡 is the ground

truth sub-channel. As seen in Fig. 8, all the NNCD blocks

predict the sub-divided channel with a mean accuracy > 15

dB. However, as you can see the edge blocks 𝑁𝑁𝐶𝐷1 and

𝑁𝑁𝐶𝐷8 perform better (> 20 dB). The performance degrades

as we move towards the middle blocks due to error propaga-

tion in dividing the channels. Adjacent zones since having

multipath components with similar distances (< 25 m) can

be erroneous in estimation. Edge blocks (e.g., 𝑁𝑁𝐶𝐷1) have

error propagating from only one adjacent block 𝑁𝑁𝐶𝐷2,

thus can be trained accurately compared to middle blocks

(e.g., 𝑁𝑁𝐶𝐷3) where error propagates from both adjacent

zones. However, this error propagation is nominal (< 3 dB)

and does not hurt downlink channel prediction accuracy.

3.2 Distance Estimate Initiator
One of the assumptions made in training for the NNCD is

that there is always at least one multipath from each section.

This assumption helps to train the neural network mod-

els without fitting noise in case there is no multipath in a

particular section. However, in actual experiments, such an

assumption is not guaranteed to hold. Thus, even in the ab-

sence of a multipath component from a zone, the NNCD

of that zone will still try to divide the channel into a cor-

responding sub-channel. If this sub-channel is further used

for distance estimation, it will generate false distance esti-

mates. Thus, if not taken care of, it will result in erroneous

channel prediction in the downlink band. To overcome this,

we introduce the Distance Estimate Initiator block. A key
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Figure 8: HORCRUX NNCD Block
performance on a typically ob-
served channel. NNCD can accu-
rately divide the channel into cor-
responding zones.
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mate 𝛼 .
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Figure 10: Distance Estimate Ini-
tiator decides to initiate𝑚𝑁𝑁𝐷𝐸𝑖
if | |𝐻𝑖 | |2 ≥ 𝛼 . 𝛼 varies with SNR lin-
early.

observation here is that the corresponding NNCD predicts

the sub-channel with a very lowmean absolute power (noise)

if there is no multipath component from a particular zone.

Fig. 9 shows the cumulative distribution function (CDF) plot

for a 𝑁𝑁𝐶𝐷𝑖 with and without a path. One can observe that

the mean absolute power of the predicted sub-channel in

the presence of a component is around 1 mW (mean CDF),

similar to the ground truth sub-channel. However, in the ab-

sence of a multipath component, the predicted sub-channel

of the 𝑁𝑁𝐶𝐷𝑖 is ∼0.4 mW. Thus, we define a threshold 𝛼

that decides whether to initiate the distance estimation for

that particular sub-channel.

𝑓𝑖 =

{
1, if | |𝐻𝑖 | |2 ≥ 𝛼
0, otherwise

(7)

where 𝑓𝑖 decides whether to initiate the𝑚𝑁𝑁𝐷𝐸𝑖 (Sec. 3.3).

Note that 𝛼 will change with different signal SNR. Fig. 10

shows the 𝛼 values for different SNRs. Also note that the 𝛼

is chosen as the minimum of all the 𝑁𝑁𝐶𝐷𝑖 blocks, as the

middle blocks can suffer a bit from erroneous estimations as

mentioned in Sec. 3.1.

3.3 mini-Neural Network Distance
Estimator

Each of the 𝑁𝑁𝐶𝐷𝑖 blocks is accompanied by a mini-Neural

Network Distance Estimator (𝑚𝑁𝑁𝐷𝐸𝑖 ) as shown in Fig.

6. HORCRUX leverages a fully connected neural network

like that introduced in OptML [11]. However, the model

size is much smaller than OptML since each𝑚𝑁𝑁𝐷𝐸 only

estimates 1-2 multipath components, focuses on a smaller dis-

tance range of 25 m, and can be trained on a smaller dataset.

These 𝑚𝑁𝑁𝐷𝐸𝑖 blocks are separately and independently

trained on physically governed simulated data based on Eq.

1 and are not dependent on the training of 𝑁𝑁𝐶𝐷𝑖 .

Fig. 11 shows the performance of mNNDE blocks. We

used the example discussed in Fig. 7. After being subdivided

by the 𝑁𝑁𝐶𝐷𝑖 blocks, the observed input channel is fed

into 𝑚𝑁𝑁𝐷𝐸𝑖 . 𝑓𝑖 in Fig. 11 shows the Distance Estimator

Initiator for each flow. Each𝑚𝑁𝑁𝐷𝐸𝑖 takes the predicted

sub-channel of 𝑁𝑁𝐶𝐷𝑖 as input and gives the coarse esti-

mates of the distance of the multipath components. Fig. 11

shows our mNNDE blocks accurately estimate the multipath

components. Thus, using this technique, we can resolve 8-10

components for a 20 MHz channel, while OptML can only

support two to three multipath estimations using a single

antenna.

3.4 Optimization Framework
This section describes how HORCRUX fine-tunes the coarse

estimates of the distance estimator blocks before predict-

ing the channel in different frequencies. We use the same

formulation introduced by OptML, mentioned in Eq. 4. A

differential evolution algorithm is used for the optimization.

However, because of our design approach, we can constrict

the bounds for each coarse distance estimate (𝑑𝑛) to about 4

m, ∼4x faster than OptML. In other words, HORCRUX can

converge more quickly even if the number of multipath com-

ponents is eight. Fig. 12 shows the result for the optimization

framework. As we can see, HORCRUX fits the observed chan-

nel accurately by estimating the channel variables {𝑎𝑛, 𝑑𝑛}.
These variables are used to estimate the cross band chan-

nel. HORCRUX predicts the downlink channel with high

accuracy as shown in Fig. 12.

3.4.1 Channel Prediction Algorithm. Algorithm 1 shows the

overall algorithm for HORCRUX channel prediction. It takes

𝑁 as the number of zones as input and the correspond-

ing 𝑁𝑁𝐶𝐷 and𝑚𝑁𝑁𝐷𝐸 blocks. It runs for all antenna ele-

ments (𝐾) in parallel. For each antenna ( 𝑗 ), 𝑁𝑁𝐶𝐷𝑖 blocks

run parallel to subdivide the uplink channel (𝐻
𝑗

𝑈𝐿
) into 𝐻𝑖 .

Distance Estimate Initiator calculates 𝑓𝑖 . If true, each of

the 𝑚𝑁𝑁𝐷𝐸𝑖 blocks gives the coarse distance estimates.

{𝑑𝑁 } = {𝑑1, 𝑑2 . . . } estimated by the 𝑁𝑁𝐷𝐸𝑖 . The initial esti-

mates are then replaced with bounded variables {𝑑}𝑏𝑜𝑢𝑛𝑑𝑒𝑑 =

{𝑑1 ± 𝑏, 𝑑2 ± 𝑏 . . . } (getBounded in Algo. 1) to reduce the
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Figure 11: HORCRUX mNNDE blocks provide accurate distance esti-
mates. This unique design allows HORCRUX to estimate multipath
components accurately. Each𝑚𝑁𝑁𝐷𝐸𝑖 takes the output of 𝑁𝑁𝐶𝐷𝑖 as
input.

Figure 12: HORCRUX fits the observed
channel using our optimization frame-
work and then, based on the estimates,
predicts the cross band channel accu-
rately.

search space and are then used in the optimization algorithm.

The fine tuned estimates {𝑑}𝑓 𝑖𝑛𝑎𝑙 are then used to compute

−→𝑎 . Finally, HORCRUX computes the downlink channel 𝐻
𝑗

𝐷𝐿
.

Algorithm 1: Channel Prediction Algorithm

1 Input: N, {𝑁𝑁𝐶𝐷1−𝑁 }, {𝑚𝑁𝑁𝐷𝐸1−𝑁 }, 𝜆𝑈𝐿 , 𝜆𝐷𝐿 , 𝐻𝑈𝐿 , b, 𝛼

2 Output: 𝐻𝐷𝐿

for all 𝑗 ∈ 𝐾 do in parallel
for all 𝑖 ∈ 𝑁 do in parallel

{𝐻𝑖 } = 𝑁𝑁𝐶𝐷𝑖 (𝐻
𝑗

𝑈 𝐿
)

Calculate 𝑓𝑖 based on Eq. 7

if 𝑓𝑖 ==1 then
{𝑑𝑖 } =𝑚𝑁𝑁𝐷𝐸𝑖 (𝐻𝑖 )

end if
end for
{𝑑 }𝑏𝑜𝑢𝑛𝑑𝑒𝑑= getBounded ({ 𝑑𝑁 },b)

{𝑑 }𝑓 𝑖𝑛𝑎𝑙 , 𝑒𝑟𝑟𝑜𝑟 = Optimize ({𝑑 }𝑏𝑜𝑢𝑛𝑑𝑒𝑑 , 𝐻 𝑗

𝑈 𝐿
)

𝐷𝑈𝐿 = getMatrix ({𝑑 }𝑓 𝑖𝑛𝑎𝑙 , 𝜆𝑈𝐿)

−→
𝑎 =D

′
𝑈𝐿
𝐻

𝑗

𝑈 𝐿

𝐷𝐷𝐿 = getMatrix ({𝑑 }𝑓 𝑖𝑛𝑎𝑙 , 𝜆𝐷𝐿)

𝐻
𝑗

𝐷𝐿
= 𝐷𝐷𝐿

−→
𝑎

end for

3.5 Training data
Each of the 𝑁𝑁𝐶𝐷𝑖 and𝑚𝑁𝑁𝐷𝐸𝑖 is trained separately on

physically grounded simulated data (Eq. 1 is used to generate

the wireless channels). The parameters for generating data

for each block are similar to OptML [11].

• RF parameters: center frequency and bandwidth

• Component distances 𝑑 ∈ [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥]
• Attenuation, 𝑎 ∈ (0, 1]
• Phase, 𝜙 ∈ [−𝜋, 𝜋]

The center frequency is chosen based on the uplink of theWi-

Fi channel, and the bandwidth is 20 MHz. Each multipath is

represented by a set of 3-tuples, {(𝑑, 𝑎, 𝜙)}. 𝑑 varies between

0 to 200 m. Note that the wireless channels generated are

highly diverse and uncorrelated with a path loss correlation

value ∼0, which resembles a dynamic wireless environment.

NNCD: We separately simulate a sub-channel for each zone

based on the above variables. The sub-channel is simulated

based on the {(𝑑, 𝑎, 𝜙)} of the multipaths of that particular

zone. Each zone has at least one multipath component. The

input channel to the NNCD is calculated by summation (nor-

malized) of all the sub-channels for that particular data point.

The output is the generated sub-channels. Fig. 7 shows the

input and output of the NNCD blocks.

mNNDE: The simulated sub-channels for NNCD are used

as input to mNNDE. The output is the sparse vector of true

distances for that sub-channel. The number of zones for HOR-

CRUX depends on the channel’s bandwidth. Throughout this

paper, we used 20 MHz bandwidth and eight zones.

Digital Twin Advantage: A substantial benefit of our ap-

proach is leveraging a physically grounded digital twin envi-

ronment to train our neural models. Such ideas have been

recently explored in various contexts such as manufacturing

[6, 69], intelligent transportation [25], and aeronautical de-

signs [38]. This simulated environment, guided by accurate

real-world physical models, has significant advantages over

training on data within a specific environment [35]. First,

unlike models trained on specific environmental conditions

that required specialized detection and resolution strategies

for out-of-distribution observations, our digital twin-based

training framework can sidestep this issue, allowing it to

generalize to arbitrary environments. Second, since these

signals are being generated with ground truth labels, we do

not require manual ground truth labeling by experts, which

can be both expensive and prone to error. Third, the process

facilitates an implicit form of grounding for our models [10].

Finally, the experimental results (see Sec. 5) demonstrate that

such a strategy can be enhanced and cross-validated with

real-world information.

4 IMPLEMENTATION
To evaluate the performance of HORCRUX in the real world,

we build a prototype with WARP v3 software-defined radio
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Figure 13: HORCRUX predicts the
absolute value of the channel ac-
curately across subcarriers.
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Figure 14: HORCRUX predicts the
phase value of the downlink chan-
nel accurately across subcarriers.
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Figure 15: HORCRUX outper-
forms baselines in LOS conditions
for a 2-antenna base station in a
small room environment.

platform [1]. We tested our system on a 2-antenna and a 4-

antenna base station, talking with two clients. Experiments

were conducted in different wireless environments (a size-

able indoor office space, smaller indoor household) in i) LOS

(line-of-sight) ii) NLOS (non-line-of-sight) and iii) moving

client conditions. The wireless environments had varied path

loss correlations. The details of the path loss correlation of

each environment are shown in Fig. 29. We used path loss

correlation as a metric to show the diversity of channels in

the wireless environments. Clients talk with the base station

using Wi-Fi 802.11n protocol. The base station uses the Long

Training Symbols (LTS) to do channel estimation after Car-

rier Frequency Offset (CFO) and Sampling Frequency Offset

(SFO) correction. The base stations have the antennas sep-

arated by around half wavelength (∼6 cm) for the 2.4 GHz

band. 20 MHz bandwidth and 64 OFDM subcarriers were

used. Like FIRE [35], we split the channel measurements

into two halves (26 subcarriers after removing guard bands).

We used the first half as uplink and estimated the other half

using HORCRUX.

FDD: We also evaluated our system in the FDD hardware

setup using WARP nodes, where the uplink and downlink

happen on different frequencies and across other devices.

NNCD achitechtureWe implemented the NNCD models

within Keras [19]. Each NNCD comprises two hidden lay-

ers, each with 128 neurons with an Exponential Linear Unit

(ELU) activation function. The models are trained separately

on 100K data points with the same input channel and target

sub-channels. The input and output to the neural net is a

linear array of [2 × 𝑁𝑓 𝑓 𝑡 ] (real and imaginary part of the

complex channel with 𝑁𝑓 𝑓 𝑡 subcarriers). We generated vari-

ous training channels with different SNRs, and each NNCD

zone had at least one multipath component.

mNNDE architecture: Similar to NNCD, each of the mN-

NDE models is trained separately on 100K data points, each

of which represents input channels generated by multipath

components of that particular zone and target vector of dis-

tance estimates (range of 25 m). Each of the models is com-

posed of 5 hidden layers, with 200 neurons on each layer.

Optimization: For optimization, we use Python [11, 29, 53].

Based on path resolution, we limit the maximum multipath

component to 12 for 20 MHz. The trained models (8 × NNCD

and 8 × mNNDE) take less than 7 MB of disk space (similar

to OptML).

5 RESULTS
In this section, we present an empirical evaluation of HOR-

CRUX. We compared performance of HORCRUX with state-

of-the-art works FIRE [35], OptML [11], and R2F2 [54]. We

evaluated our performance in multiple environments. We

implemented these baselines from scratch.

5.1 Microbenchmarks
We provide microbenchmarks to evaluate the performance

of HORCRUX and other state-of-the-art systems. Specifically,

we trained HORCRUX, FIRE, and OptML using simulated

channel measurements. The simulated channels during train-

ing are uncorrelated (we used a path loss correlation value

of ∼0.01). We used 2-antenna and 4-antenna base stations to

implement the system for testing.Wemoved the client across

more than 500 different LOS and NLOS positions with vary-

ing SNR in both household and office environments. Fig. 13

and Fig. 14 show the prediction performance of HORCRUX.

We observe that HORCRUX predictions are very similar to

the actual channel measurements (absolute and phase val-

ues).

5.1.1 Channel Prediction Accuracy. We defined channel pre-

diction accuracy by Eq. 6. It is an essential metric in the

MU-MIMO setup, as errors in predicting the downlink chan-

nel can result in interference across clients, affecting SINR

performance. Fig. 15 and Fig. 16 show the CDF plot of chan-

nel prediction accuracy gain in dB of HORCRUX compared

to state-of-the-art systems. Experiments are done in LOS and

NLOS conditions for a 2-antenna base station and a single
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Figure 16: HORCRUX outper-
forms baselines in NLOS condi-
tions for a 2-antenna base station
in a small room environment.
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Figure 17: Channel prediction ac-
curacy for a 4-antenna base station.
Experiments are performed in a
large office environment.
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Figure 18: HORCRUX performs ac-
curately under varying SNR. The
mean channel prediction accuracy
is ∼13 dB.
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Figure 19: HORCRUXper-
forms accurately for a
moving client.
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Figure 20: HORCRUXper-
formance varies with sig-
nal SNR.

client in a small room. The mean CDF channel prediction

accuracy for HORCRUX for LOS condition is 10.34 dB and

for NLOS is 11.02 dB. We observe that HORCRUX achieves

∼8 dB gain compared to the state-of-the-art systems. The

main reason is that FIRE, OptML, and R2F2 perform poorly in

multipath-rich environments and need accurate knowledge

to train in such environments. Such low prediction accuracy

affects MU-MIMO for such systems. However, HORCRUX,

because of its unique architecture, can perform accurately in

such environments. We reiterate that HORCRUX is trained

on simulation data only and has no prior knowledge of the

environment.

Fig. 17 shows the performance of HORCRUX using a 4-

antenna base station. The experiments are performed on a

single client across 200 positions in an office environment.

HORCRUX continues to outperform the baselines by a mar-

gin of ∼6 dB. We note that channel prediction accuracy is

dependent on the signal SNR. The red line in Fig. 18 shows

the signal SNR across our experimental measurements. The

SNR varies between 10-20 dB. The blue dotted line in Fig. 18

shows the HORCRUX channel prediction accuracy for differ-

ent SNRs. HORCRUX continues to perform quite accurately

even under low SNR conditions. We also performed channel

prediction for a moving client. We moved a client around

the office room for 2.5 minutes and predicted the downlink

channel. We observe (see Fig. 19) that HORCRUX performs

accurately under varied SNR conditions.

To understand this relationship between accuracy and

SNR in detail, we performed controlled experiments where

the client was placed in locations with SNR varying from 25

dB to 10 dB. Fig. 20 shows the performance of HORCRUX

across different SNR values - we observe that HORCRUX

achieves around 15 dB mean channel prediction accuracy for

high SNR environments (25 dB). Accuracy decreases with

a decrease in SNR values. Such variation is also observed

in state-of-the-art systems. However, even in a low SNR

environment (10 dB), HORCRUX performs quite accurately.

5 10 15 20 25 30

Beam Gain(dB) K = 2

0

0.2

0.4

0.6

0.8

1

c
d
f

Grd Truth

No beam

HORCRUX

OptML

FIRE

R2F2

Figure 21: Beamforming
gain for a two-antenna
base station. HORCRUX
achieves 0.1 dB lower
than ground truth.
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Figure 22: Beamforming
gain for a four-antenna
base station. Beamform-
ing gain increases with
antenna size.

5.1.2 Beamforming Performance. One of the applications of
MIMO systems is beamforming, where the base station uses

multiple antennas to steer a beam to a specific client. Such

techniques can improve SNR and data rates at the client. We

evaluate our performance by utilizing the predicted chan-

nels in the downlink to beamform to the client. We compare

our result to the ground truth channel (Grd Truth) that will

achieve optimal beamforming and a random downlink chan-

nel as the baseline where there is no beamforming (No beam).

Fig. 21 and Fig. 22 show the performance of HORCRUX

for 2-antenna and 4-antenna setups, respectively. As you can

see, HORCRUX can beamform near optimally to the ground

truth channel beam. The beam gain difference from optimal

is < 0.1 dB. FIRE, OptML, and R2F2 follow closely with a beam

gain difference of ∼2 dB from HORCRUX. We note that the

channel accuracy requirement for beam gain performance is

low [35]. Thus, state-of-the-art works can perform well in

beamforming even with low channel accuracy.
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Figure 23: HORCRUX achieves
mean ∼8 dB MU-MIMO SINR for
2-antenna and 4-antenna base sta-
tion across two clients.
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Figure 24: For the 4-antenna setup
HORCRUX achieves ∼9 dB MU-
MIMO SINR gain over state-of-the-
art.
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Figure 25: SINR gain across an-
tenna size. HORCRUX achieves >
10 dB SINR gain for 16 antennae

5.1.3 Multi-User MIMO Performance. Multi-antenna base

stations enable multi-user MIMO technique where it can

simultaneously talk with multiple clients. However, the oner-

ous requirement to performMU-MIMO is to predict accurate

downlink channels. Errors in channel prediction can result

in signal leakage into different non-intended clients and

cause interference. We use SINR as the metric to evaluate the

performance of MU-MIMO. We experimented on 2-antenna

and 4-antenna base stations, talking to two clients using the

zero-forcing technique mentioned in Sec. 2.2. The experi-

ments are repeated across more than 20 different locations

of the clients for office environments with well-conditioned

channels. HORCRUX achieves 9.2 dB median SINR for the

2-antenna 2-client setup and 11.12 dB for the 4-antenna 2-

client setup. Fig. 23 shows the performance of HORCRUX

for 2-antenna and 4-antenna setups for each of the clients.

Fig. 24 shows the SINR gain of HORCRUX over state-of-

the-art systems for the 4-antenna setup. As you can see,

HORCRUX outperforms the baselines by a mean of 8-10 dB.

Fig. 25 shows the performance of HORCRUX across larger

antenna systems. We used simulation data to evaluate the

performance as we could only support a 4-antenna array

in our setup. The uplink channels we generated using Eq.

1 and four multipaths ranging from 1 to 200 meters were

used. As you can see, for an increase in antenna elements,

HORCRUX outperforms the baselines with a higher margin.

For 16-antenna elements, HORCRUX has around 15 dB im-

provement over the state-of-the-art. The main reason is that

FIRE, OptML, and R2F2 estimate channels with low accuracy

in multipath-rich environments (i.e., uncorrelated observed

channel path loss).

5.2 Robustness Across Environment
To evaluate our performance across different conditions, we

experimented in 6 different environments: i) Small room, ii)

Large Office, iii) Argos indoor, iv) Argos outdoor, v) Simu-

lated environment with four multipaths ranging from 1-100

m, vi) Simulated environment with two multipaths ranging

from 1-50 m.

Fig. 29 shows the path loss correlation values in different

environments. It measures the relationship of the observed

channels in that particular environment. We observe that

Small room, Argos indoor, and Argos outdoor experience

high mean path correlation (> 0.5) among the channels ob-

served, while Office and the simulated environments show

uncorrelated channel observations (< 0.5). A realistic experi-

mental setup should have uncorrelated observations because

of the varyingmultipath combinations.We find that path loss

correlation is a key metric that helps explain the comparitive

performance of HORCRUX with baselines.
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Figure 29: Path loss correlation values for different
testbeds. A realistic environment is expected to have a
value < 0.5.

The Argos
2
channel measurements were collected in the

RENEW testbed [47] with 64-antenna base stations across

eight clients. We used a subset of the data (four antennae

across four clients) to evaluate our performance. 2-antenna

base stations were used in the small room setup, and the

client was moved around at 20 different locations a few feet

apart. In the office environment, a 4-antenna base station was

used, and the client was moved around 20 different locations

around 10 feet apart.

We trained FIRE on the Argos indoor dataset and tested it

for all the environments. For HORCRUX, we used simulated

data as mentioned in Sec. 3 for training. As observed in

2
We used Argos as FIRE [35] used this testbed for evaluation.



HORCRUX: Accurate Cross Band Channel Prediction ACM MobiCom ’24, September 30-October 4, 2024, Washington D.C., DC, USA

Small 

 room

Office Argos

 Indoor

Argos

 Outdoor

Sim 100m

 4 paths

Sim 50m

 2 paths

0

10

20

30

C
h

a
n

n
e

l 
P

re
d

ic
ti
o

n
 A

c
c
 (

d
B

)

FIRE

HORCRUX

Figure 26: FIRE was trained on Ar-
gos indoor and tested across other
environments. It can only perform
accurately in Argos indoor and
fails in all other cases. Thus, FIRE
requires to be trained and tested
across each environment. How-
ever, HORCRUX generalizes accu-
rately across each case without
any knowledge about the environ-
ment.
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Figure 27: FIRE trained and tested
in each of the environments sep-
arately. FIRE fails to perform
in an environment with uncor-
related channels (HORCRUX of-
fice and simulated environments).
HORCRUX enjoys good accuracy
across all environments. Thus,
HORCRUX is robust across wire-
less environments.
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estimates channel across differ-
ent frequency bands. The green
zone signifies the observed chan-
nel. FIRE requires to be trained
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Fig. 26, FIRE performswell in the trained environment (Argos

indoor), but it fails to estimate the channel accurately across

other environments. FIRE, being an end-to-end architecture,

fails to capture the underlying physical environment and

cannot be generalized across other environments having

different combinations of multipaths.

We also trained and tested FIRE on each of the environ-

ments separately. Fig. 27 shows the performance across mul-

tiple environments. As we can see, even with enough knowl-

edge about the wireless environment, FIRE can only perform

well in an environment (Small room, Argos indoor and Argos

outdoor) with correlated channels, as shown in Fig. 29. In

an environment with uncorrelated channels, FIRE fails to

perform well.

On the other hand, as seen in Fig. 26 and 27, HORCRUX

enjoys accurate estimations across different environments. It

is trained only on simulated data and does not require train-

ing across environments. Unlike systems trained on specific

environmental conditions, the digital twin-based training

framework within HORCRUX, with the help of NNCD and

mNNDE architectures, as mentioned in Sec. 3, captures a

broad range of possible physical environments and thus can

give good channel prediction allowing it to generalize to ar-

bitrary environments. However, for the Argos dataset, there

is a decrease in channel prediction accuracy because of inac-

curate offset correction.

5.3 FDD Hardware Implementation
We implemented an FDD setup using a 2-antenna base sta-

tion. Uplink and downlink are in different frequency chan-

nels, and separate radio-frequency (RF) chains are used. Ex-

periments are carried out in multiple LOS and NLOS posi-

tions with varying SNR. We measured uplink on channel 1

(2.412 GHz) and predicted downlink on channel 6 (2.437 GHz

- 25 MHz separation) and channel 11 (2.462 GHz - 50 MHz

separation), respectively, in a separate set of experiments.

Fig. 30 and 31 show the channel prediction accuracy gain

of HORCRUX compared to state-of-the-art where uplink-

downlink are separated by 25 MHz and 50 MHz, respectively.

HORCRUX enjoys amean gain of∼6 dB. To summarize, HOR-

CRUX outperforms the state-of-the-art on the FDD hardware

implementation.
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Figure 30: HORCRUXout-
performs baseline in an
FDD setup with 25 MHz
separation between up-
link and downlink.
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Figure 31: HORCRUXout-
performs baseline in an
FDD setup with 50 MHz
separation between up-
link and downlink.

5.4 Across Frequency Bands
To show the performance of HORCRUX across the different

frequency bands, we performed a simulation where we ob-

served the uplink band on a particular frequency and tried

to predict channel measurements across different frequency

bands. Fig. 28 shows the performance of HORCRUX across

different downlink frequency bands. The green line shows

the observed channel measurements in a particular band.

HORCRUX accurately predicted the downlink channel across

different bands (see dotted blue line). However, for state-of-

the-art FIRE, one must extensively train the system (100K
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channel measurements) for separate downlink bands to pre-

dict in that particular band, which is time-consuming and

not always feasible.
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Figure 32: HORCRUX performs competitively better
than baselines and 4x and 50x faster than OptML and
R2F2 for eight multipath components

5.5 Processing Time
Given the observed uplink channel, an essential performance

aspect is the processing time to estimate the downlink chan-

nel. Fig. 32 shows the processing time required for state-

of-the-art systems. FIRE does not require estimating the

underlying physical parameters and thus can estimate the

downlink channel within a mean of 1 ms across any number

of multipath components. For HORCRUX, OptML, and R2F2,

the processing time includes the estimation of initial guesses

and the optimization framework to estimate the channel.

HORCRUX observes a run time of ∼30 ms for both 2 and

8 multipath components. The increased processing time is

mostly because of the optimization framework. However,

due to NNCD and mNNDE, HORCRUX can rapidly converge

with a small search window. Thus, even with an increase in

the number of components, HORCRUX performs almost sim-

ilarly. OptML performs faster if the number of components

is less (∼2), however as shown in Fig. 32, with the increase

in the number of multipath components, the optimization

framework takes a reasonable amount of time to converge.

HORCRUX outperforms OptML by 4x. R2F2 performs worst

because of its signal processing technique to estimate the

initial guesses. HORCRUX is more than 50x faster than R2F2

in 8 multipath case. The coherence time for the outdoor

environment for the 2.4 GHz band is 1-50 ms [35], which

means the underlying channel parameters do not change

much within this time frame. HORCRUX thus can accurately

estimate the downlink channel. Even though FIRE performs

the fastest, it cannot be generalized and extended to other

environments and frequency bands as it is unable to estimate

the underlying physical parameters.

6 RELATEDWORKS
6.1 Cross band Channel Prediction
Cross band channel prediction has been well-researched

in recent years to eliminate the requirement of feedback

overhead in FDD systems. Works like [21, 31] addressed the

feedback issue by compressing the overhead required. How-

ever, these techniques are not zero-feedback-based systems

like our proposed work. Zero-feedback-based approaches are

also introduced in works like [11, 26, 27, 39, 43, 54, 59]. Most

of these works utilize signal processing or a physics-based

approach to estimate the downlink channels. However, these

techniques suffer from excessive processing time and fail to

perform accurately in multipath-rich environments. Works

like [7, 9, 11, 35, 44, 46, 50, 56, 64, 65] uses different machine

learning architecture like convoluted neural network (CNN),

feedforward neural network (FNN) and variational autoen-

coders (VAE). However, these works are end-to-end systems

that predict the downlink directly from the uplink channel.

These techniques require very small processing time for pre-

diction, however, they require to be trained on the particular

environment and frequency band and cannot be generalized.

Unlike these works, HORCRUX introduces physics-based

machine learning architectures as mentioned in Sec. 3 that

can estimate the underlying physical parameters and thus

can estimate the downlink channel across environments and

frequency without any knowledge of the wireless environ-

ment.

6.2 Machine Learning in Wireless Systems
Recent years have seen considerable development in using

machine learning in wireless system designs. ML-aided wire-

less sensing [2, 3, 8, 32], localization [4, 14, 24, 40], in-band

channel prediction and modeling [42, 62, 66, 67], MIMO sys-

tems [17, 18, 23, 51] have shown great improvement. Our

proposed work follows the same vision, however, it utilizes

machine learning to retrieve the physical information of a

wireless channel. Such fine-grained information can help

in various other domains of research in wireless systems.

Mixture of Experts (MoE) is a machine-learning technique

that has been used in recent years [13, 45, 48, 55, 68] to di-

vide a problem into sub-tasks, each managed by an expert

(NN). A gating model is normally used to select which expert

to trust while generating predictions. Such technique has

been proven efficient in vision applications for fine-grained

training and achieving super-resolution. HORCRUX follows

a similar divide-and-conquer approach to predict the down-

link channel, however, our technique is different from MoE’s

as we do not require any gating mechanism and each of the

neural networks is trained independently. Such flexibility

makes our system easy to train and scale.

7 DISCUSSION
1) Delay spread: In wireless communications, the delay

spread of a channel refers to the difference in path length

of the first and the last path in the channel. Thus, the range
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of the delay spread governs the number of possible multi-

path components, which in turn corresponds to the size of

the NNCD and mNNDE used within HORCRUX and the

amount of dataset required to train. Throughout this paper,

we trained HORCRUX to resolve multipath within the de-

lay spread range of 0-200 m, which is a realistic assumption

and has been used in related works [11]. If the distance trav-

eled by the multipath components exceeds 200 m, it will not

be identified by HORCRUX, resulting in erroneous channel

prediction. To remedy that, we will use the shifting vec-

tor technique introduced by OptML [11]. We can get very

coarse estimates of the distances from the IFFT bin of the

channel impulse response, which can be used to compute

the 𝑑𝑠ℎ𝑖 𝑓 𝑡 (shifting the distance estimates within the trained

delay spread). Such a technique can restrict the training for

NNCD and mNNDE to the maximum delay spread of 200 m.

2) Sampling rate or Signal bandwidth: The sampling

rate or signal bandwidth determines the ability to resolve

two multipath components arriving at different times. Thus,

a 10 MHz bandwidth limits our resolution to 30 m, i.e., one

can resolve multipaths traveling at least 30 m apart, while a

20 MHz bandwidth allows a finer resolution of 15 m. How-

ever, if paths arrive within that resolution range, it becomes

difficult for our system to resolve them. HORCRUX will esti-

mate some composite distance. Such an estimation can affect

the channel prediction accuracy. However, all physics-based

systems [11, 54] will suffer from this limitation. Successive in-

terference cancellation techniques [20] is one way to counter

this limitation, as it can be used to estimate the paths itera-

tively.

3) Hardware imperfections: The uplink channel at the

base station is measured using the preambles transmitted by

the client. Such channel measurements are associated with

CFO, SFO, and hardware imperfection delays. Such offsets

can be measured and corrected by established techniques

[35, 41]. It is to be noted that such corrections are essential

for HORCRUX, or else it can result in erroneous distance

estimates.

4) Processing time minimization: Processing time or

run time is the time to predict the downlink channel from the

observed uplink. HORCRUX takes around 30 ms to estimate

the channel. It is faster than most state-of-the-art systems

but slower than end-to-end architectures like FIRE. Much of

the processing time for HORCRUX is due to the optimiza-

tion framework. However, such a framework can be further

optimized using local optimization. At this point, HORCRUX

uses all the distance estimates together to fit the uplink chan-

nel as mentioned in Sec. 3.4. We can further subdivide this

optimization framework where the distance estimate from

each𝑚𝑁𝑁𝐷𝐸𝑖 can be used to fit into the output of 𝑁𝑁𝐶𝐷𝑖
locally. Such a design can decrease the optimization time

by 10x. However, for such a design to work, NNCD blocks

must estimate with high prediction accuracy. This research

improvement has been kept for future work. Throughout

this paper, our primary goal was to design a system that can

be generalized across environments with high accuracy and

reasonable processing time.

5) Prediction across space:We note that each antenna

element runs HORCRUX parallelly. The size of the HOR-

CRUX model operating on a single antenna is ∼7 MB. Thus,

the model’s size will increase linearly for a massive MIMO

system with 64-128 antenna elements. However, the path

distance of multipath components arriving at each antenna

will differ based on the architecture of the antenna array.

Thus, if the antenna array architecture is known, HORCRUX

can use the distance estimates for one antenna in the opti-

mization framework to predict the downlink channel across

other antenna elements in the array. We have left this work

for the future.

8 CONCLUSION
In this paper, we present HORCRUX, a physics-based ma-

chine learning system that can predict wireless channels

across different frequency bands and can be used by various

wireless devices ranging from single-antenna IoT devices to

massive MIMO base stations. We evaluated and compared

our system with state-of-the-art techniques across different

wireless testbeds and simulations. Our evaluations show that

HORCRUX can predict crossband channels with high accu-

racy and achieves ∼8 dB SINR gain over the state-of-the-art.

To the best of our knowledge, HORCRUX is a first-of-its-kind

system that can continue to provide accurate estimations

across multiple wireless environments with low correlation

without any prior knowledge of that particular environment.

Integration of our proposed system will be essential to the

success of next-generation wireless networks, such as 5G

and 6G, and these tools will help to improve the overall per-

formance and efficiency of wireless communication systems.
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