# of Displayed Technologies: 5 / 5

Applied Category Filter (Click To Remove): Industrial Processes & Manufacturing


Categories

Mesoporous Support-Immobilized Metal Oxide Nanoparticles for High-Purity Syngas Generation
TS-071809 — The Need Syngas is an essential intermediate for producing high-value chemicals such as gasoline, methanol, and dimethyl ether. Current industrial methods (steam reforming, autothermal reforming, and partial oxidation) are energy-intensive, costly, and environmentally burdensome. Moreover, these met…
  • College: College of Engineering (COE)
  • Inventors: Fan, Liang-Shih; Cheng, Zhuo; Liu, Yan; Qin, Lang
  • Licensing Officer: Ashouripashaki, Mandana

Redox Chemical Looping System for CO2 Capture and Syngas Generation
TS-071808 — The Need Industrial syngas and hydrogen production processes are highly energy-intensive and contribute significantly to carbon emissions due to reliance on fossil fuel combustion. Existing methods require multiple unit operations, resulting in low efficiency and high operational costs. There is a c…
  • College: College of Engineering (COE)
  • Inventors: Fan, Liang-Shih; Baser, Deven Swapneshu; Cheng, Zhuo; Shah, Vedant
  • Licensing Officer: Ashouripashaki, Mandana

Stable Phase Metal Oxide Syngas Generation without Molecular Oxygen
TS-071806 — The Need Current syngas production from methane relies on energy-intensive air separation units (ASUs) to supply molecular oxygen, driving up capital and operating costs. Conventional catalysts also suffer from carbon deposition at low oxidant concentrations, limiting process flexibility and efficie…
  • College: College of Engineering (COE)
  • Inventors: Fan, Liang-Shih; Baser, Deven; Cheng, Zhuo; Kathe, Mandar; Kong, Fanhe "Frank"; Nadgouda, Sourabh; Tong, Andrew
  • Licensing Officer: Ashouripashaki, Mandana

Rare Earth Element Trap-Extract-Precipitate (REE-TEP) Process
TS-061849 — The Rare Earth Element Trap-Extract-Precipitate (REE-TEP) process is a cost-effective and environmentally benign approach to recover rare earth elements (REEs) from acidic waste streams. It involves beneficial reuse of readily available industrial by-products and a naturally occurring organic ligand resulting in REE concentrate that can be commercially processed to produce rare earth oxides (REOs).
The Need Rare earth elements are critical components of many emerging technologies. Because conventional sources of REEs in the United States are limited, identifying alternative sources is important. Many mining and industrial waste streams have elevated concentrations of REEs and can be potential…
  • College: College of Engineering (COE)
  • Inventors: Cheng, Chin-Min "Jason"; Bielicki, Jeffrey "Jeff"; Butalia, Tarunjit; Lenhart, John
  • Licensing Officer: Randhawa, Davinder

Iron Oxide Composites with Low Concentration of Aliovalent Dopants As Oxygen Carrier Materials for Sustainable Redox Combustion and Gasification Reactions in Chemical Looping Reactor Systems
TS-038513 — Addition of low concentration aliovalent transition metal dopants substantially improves particle performance in chemical loopiong systems
Cyclic systems are required for energy conversion systems. In the clean energy industry, chemical looping offers promise for carbon dioxide capture from fossil energy. Transition metal oxides such as iron oxide, nickel oxide, and copper oxide have been singled out as the desired active oxygen carr…
  • College: College of Engineering (COE)
  • Inventors: Fan, Liang-Shih; Cheng, Zhuo; Chung, Cheng; Guo, Mengqing "MENGQING"; Qin, Lang
  • Licensing Officer: Ashouripashaki, Mandana

Loading icon