# of Displayed Technologies: 4 / 4


Categories

Revolutionizing Pharmaceutical Synthesis: Advancements in Metal-Catalyzed Coupling Technology
TS-064824 — The Need In the pharmaceutical industry, the synthesis of complex organic substrates is crucial for the development of life-saving medications. However, traditional metal-catalyzed coupling reactions often face significant challenges when applied to these complex substrates, leading to high failure…
  • College: College of Arts & Sciences
  • Inventors: Sevov, Christo; Dinh, Long; Hamby, Taylor; Starbuck, Hunter
  • Licensing Officer: Panic, Ana

Electrocatalytic grafting and modification of polyvinylchlorides and chloroparaffins
TS-064268 — Polyvinylchloride (PVC) is a widely used plastic, but its inherent limitations—brittleness, thermal instability, and poor shear strength—pose significant challenges for diverse applications, from medical packaging to construction. Conventional PVC modification relies on high loadings o…
  • College: College of Arts & Sciences
  • Inventors: Sevov, Christo; Truesdell, Blaise
  • Licensing Officer: Panic, Ana

Dual ligand systems for cross-coupling of challenging C(sp2) and C(sp3) electrophiles.
TS-059018 — An unusual series of ligand exchange reactions establishes a dualcatalyst system for electroreductive alkyl-aryl cross-electrophile couplings of previously incompatible substrate combinations.
Cross-electrophile coupling (XEC) reactions of aryl and alkyl electrophiles are desirable methodologies for C–C bond formation but are limited to specific substrate classes. Couplings of widely-available electrophiles such as aryl chlorides or triflates are currently unknown with any alkyl b…
  • College: College of Arts & Sciences
  • Inventors: Sevov, Christo; Hamby, Taylor
  • Licensing Officer: Panic, Ana

Redox Relay Flow Batteries: hybrid systems for scalable, high-capacity batteries.
TS-050105 — This application relates generally to a novel redox relay flow batteries comprising redox-active solids configured to behave as storage materials and redox-active organic molecules configured to behave as energy shuttles.
The Need The growing global demand for electrical energy has increased research efforts towards the integration of renewable energy sources into the electrical grid. Generation of energy from petroleum-based sources dominates the current market, but dependence on renewable energy is expected to gro…
  • College: College of Arts & Sciences
  • Inventors: Sevov, Christo; Wong, Curt
  • Licensing Officer: Panic, Ana

Loading icon