# of Displayed Technologies: 4 / 4

Applied Category Filter (Click To Remove): Energy, Earth, & Environmental


Categories

Designing High-Donicity Anions for Rechargeable Potassium Superoxide/Peroxide Batteries
TS-066015 — The Need Over the past two decades, the advancement of metal-O2 batteries has been hindered by issues of instability, reversibility, and poor energy efficiency, primarily due to the instability of superoxide in the presence of Li+ and Na+ ions. Existing solutions such as Li-O2 and Na-O2 batteries h…
  • College: College of Arts & Sciences
  • Inventors: Wu, Yiying
  • Licensing Officer: Randhawa, Davinder

Introducing Next-Gen Solid-State Electrolytes: Revolutionizing Energy Storage
TS-062369 — The Need: In the pursuit of large-scale energy storage solutions, potassium batteries with organic liquid electrolytes have emerged as promising candidates. However, the use of liquid electrolytes presents challenges such as dendritic metal plating and oxygen/sulfur crossover from the cathode. To ov…
  • College: College of Arts & Sciences
  • Inventors: Wu, Yiying; Zheng, Jingfeng
  • Licensing Officer: Randhawa, Davinder

Asymmetric Sulfonamide Salts for High-Voltage Li-ion Batteries
TS-041602 — This two-step method synthesizes novel asymmetric sulfonamide based lithium salts that are highly soluble, resulting in a highly-concentrated electrolyte with a large electrochemical window that significantly suppresses aluminum dissolution even in extreme oxidizing conditions.
The market for electric vehicles is steadily increasing; as it continues to grow one problem consistently holding it back is battery capacity. For this market to expand further, methods for storing large amounts of energy safely and affordably must be developed. One approach is to create more capa…
  • College: College of Arts & Sciences
  • Inventors: Wu, Yiying; McCulloch, William
  • Licensing Officer: Randhawa, Davinder

Semi-crystalline Polymer Nanocomposite and Foam Structure and Method for Making the Same
TS-038002 — A new way to create polymer nanocomposite foam structures with enhanced mechanical properties.
Nanotechnology is a constantly growing field, and has a vast potential to change the world for the better. One of the many things products that the nanotechnology field has given to us is the polymer nanocomposite and their foams. This foam has a greater value than traditional plastic foams, since…
  • College: College of Engineering (COE)
  • Inventors: Lee, L James; Chiu, Debbie Yven; Fu, Dajiong; Li, Dachao; Yen, Ying-Chieh
  • Licensing Officer: Zinn, Ryan

Loading icon