# of Displayed Technologies: 10 / 265


Categories

Revolutionary Modular Nuclear Reactor Core for Space Exploration
TS-066252 — Rotating Fuel Core with Fuel Strip(s) ("ROFFUS") is an innovative modular nuclear reactor core designed to provide reliable and scalable power for advanced space missions.
Future space missions require dependable, high-output energy sources to support operations such as material processing, transportation, and thermal conditioning, particularly in challenging environments like the lunar poles where sunlight is scarce. This advanced nuclear reactor core features a…
  • College: College of Engineering (COE)
  • Inventors: Smidts, Carol; Aldemir, Tunc; Cao, Lei Raymond; Horack, John; Khafizov, Marat
  • Licensing Officer: Zinn, Ryan

BDAMPER: Advanced Application Software for Dynamic Analysis and Design of Friction Damper Structures
TS-066234 — In the realm of rotating machinery and structural engineering, the need to manage and mitigate vibrations is paramount. Excessive vibrations can lead to material fatigue, operational inefficiency, and catastrophic failures. Industries require a sophisticated, accurate, and versatile tool to design…
  • College: College of Engineering (COE)
  • Inventors: Menq, Chia-Hsiang; Yang, Been-Der
  • Licensing Officer: Zinn, Ryan

3D Object-based Segmentation-based Quantification of Spatial Protein Organization (OBS3D)
TS-066233 — Protein analysis is foundational to understanding human physiology and is helpful for basic research, diagnosis, guiding treatment, and monitoring of human disease. There are several widely used platforms for evaluating protein function. The primary tools used in protein analysis on cells and tissues include antibody/aptamer, fluorescent detection systems, and mass spectrometry.
Colocalization analysis is the current standard technique for assessing spatial association of co‐labeled proteins in cells using multicolor immunofluorescence images. However, these tools are limited because multiple antigens nearby exhibit overlapping staining, which leads to inaccurate analys…
  • College: College of Engineering (COE)
  • Inventors: Veeraraghavan, Rengasayee
  • Licensing Officer: Zinn, Ryan

Innovative Solutions for Cell Viability and Targeted Delivery
TS-066100 — Research tool to transfect cells ex vivo using electroporation through electrospun core-shell fibers for research applications
The Need: Conventional electroporation methods often result in low cell viability due to heat generation, especially when working with primary cells. These methods also face challenges with non-specific transport of molecules, high vector integration rates leading to mutagenesis, and inefficacy in …
  • College: College of Engineering (COE)
  • Inventors: Gallego Perez, Daniel; Das, Devleena; Duarte Sanmiguel, Silvia; Higuita Castro, Natalia
  • Licensing Officer: Schultz, Teri

A Cybersecurity Vulnerability Prioritization System Including Identifying "Super-Critical" Vulnerabilities, predicting "Dark Host" Vulnerabilities, and Addressing Economic Costs
TS-066063 — Our cybersecurity vulnerability maintenance system stands as a pillar of modern security strategy, transforming reactive security measures into a preemptive defense mechanism. This integration of technology and economics ensures that your most critical assets are protected efficiently and effectively, making it an invaluable tool for any organization serious about security.
In today’s hyper-connected world, the escalation in cyber threats poses significant risks to organizational data and systems. Vulnerabilities within network infrastructures can lead to massive security breaches, as demonstrated by incidents like the 2017 Equifax hack. Effective vulnerability…
  • College: College of Engineering (COE)
  • Inventors: Allen, Theodore; Liu, Enhao
  • Licensing Officer: Zinn, Ryan

SimulationAI -- AI-Enabled Software Solution for Physics-Based Simulations
TS-066058 — By adopting our AI-driven solution, engineering teams can achieve more in less time, push the boundaries of innovation, and significantly cut down costs, all while maintaining or increasing the reliability and accuracy of their structural and material analysis. This is not just an evolution in FEM technology—it's a revolution.
In an era where precision and efficiency drive the success of engineering projects, the finite element method (FEM) remains indispensable but is burdened by high operational and computational costs. These costs often lead to overlooked uncertainty factors, suboptimal designs, and significant finan…
  • College: College of Engineering (COE)
  • Inventors: Soghrati, Soheil; vemparala, Balavignesh; Yang, Ming
  • Licensing Officer: Zinn, Ryan

System for automated high-speed imaging and genetic manipulation of C. elegans on agar media
TS-065892 — The Need The microscopic worm C. elegans is a model animal studied in more than 1500 biological and medical research laboratories worldwide due to its genetic manipulability and optical transparency. In C. elegans research, the manual process of picking worms between plates presents a significant …
  • College: College of Engineering (COE)
  • Inventors: Fang-Yen, Christopher "Chris"; Alhalbi, Serge; Li, Zihao
  • Licensing Officer: Randhawa, Davinder

Sacrificial Layer to Facilitate Welding of Thin Foils
TS-065430 — Cost-effective method to prevent damaged electrodes when welding thin foils.
Manufacturing of automotive lithium-ion batteries and battery packs is attracting growing attention with the driving demands of electric vehicles. During battery assembly, multi-layers of metal films, functioning as anodes, cathodes, or bus-bars are welded together. Achieving satisfying weld quali…
  • College: College of Engineering (COE)
  • Inventors: Liu, Xun; Kwon, Ho; Shah, Umair
  • Licensing Officer: Zinn, Ryan

Use of Cerium in Neutralizing Iron Impurity in Aluminum Alloys
TS-065429 — Iron is the main and most detrimental impurity in most industrial casting aluminum alloys. Iron content in aluminum alloys is limited, up to 0.1 weight% in some alloys.
Iron is a major impurity element in primary and secondary (scrap) aluminum alloys. It is difficult to remove during melting and casting. Controlling the formation of Al-Fe-based intermetallics via alloying is key to leveraging the mechanical properties of aluminum alloy products. The current struc…
  • College: College of Engineering (COE)
  • Inventors: Luo, Alan; Cinkilic, Emre; Moodispaw, Michael
  • Licensing Officer: Zinn, Ryan

Streamlined Die Design Approach for Friction Stir Extrusion
TS-065428 — The Ohio State University researchers led by Dr. Rajiv Shivpuri have developed a die design approach for friction stir extrusion that optimizes metal flow to improve production efficiencies.
Friction stir extrusion (FSE) is a variation of friction stir processing that enables the hot extrusion of metal profiles from billet or other precursor material without preheating. This process saves significant thermal energy over conventional metal extrusion processes and can impart favorable …
  • College: College of Engineering (COE)
  • Inventors: Shivpuri, Rajiv
  • Licensing Officer: Zinn, Ryan

Show More Technologies

Loading icon