# of Displayed Technologies: 5 / 5


Categories

Advancing RNA Detection with Innovative Peptide-Based Fluorescent Probes
TS-065455 — The Need: In modern biotechnology and biomedical research, there is an escalating demand for efficient tools that can accurately detect and analyze specific RNA sequences. The ability to precisely target and identify RNA molecules, particularly U-rich sequences, is crucial for various applications s…
  • College: College of Arts & Sciences
  • Inventors: Bong, Dennis; DeSantis, Christopher; Gopalan, Venkat; Liang, Yufeng; Mao, Jie; Marathe, Ila; Miao, Shiqin "Shiqin"
  • Licensing Officer: Willson, Christopher

Use of Cerium in Neutralizing Iron Impurity in Aluminum Alloys
TS-065429 — Iron is the main and most detrimental impurity in most industrial casting aluminum alloys. Iron content in aluminum alloys is limited, up to 0.1 weight% in some alloys.
Iron is a major impurity element in primary and secondary (scrap) aluminum alloys. It is difficult to remove during melting and casting. Controlling the formation of Al-Fe-based intermetallics via alloying is key to leveraging the mechanical properties of aluminum alloy products. The current struc…
  • College: College of Engineering (COE)
  • Inventors: Luo, Alan; Cinkilic, Emre; Moodispaw, Michael
  • Licensing Officer: Zinn, Ryan

Three-dimensional cellular automation codes for solidification microstructure and porosity simulation of multi-component alloys
TS-063911 — Porosity formation during the solidification of aluminum-based alloys, induced by hydrogen gas and alloy shrinkage, presents a significant challenge for industries relying on high-performance solidification products such as castings, welds, and additively manufactured components. This issue advers…
  • College: College of Engineering (COE)
  • Inventors: Luo, Alan; Gu, Cheng
  • Licensing Officer: Zinn, Ryan

High-entropy AlCrTiV alloys
TS-063365 — Experience the future of materials technology with our high-entropy AlCrTiV metal alloy—a revolutionary solution that reshapes the possibilities in engineering and manufacturing. Elevate your products to new heights of performance, efficiency, and sustainability with our innovative alloy. For a closely related technology, please visit https://oied.osu.edu/find-technologies and type "T2021-261" in the search field.
In various industries, from aerospace to manufacturing, the pursuit of materials with exceptional mechanical properties coupled with low weight is unending. Conventional alloys often trade off one aspect for another, leaving a gap in the market for a metal alloy that seamlessly integrates strength…
  • College: College of Engineering (COE)
  • Inventors: Luo, Alan; Huang, Xuejun; Sun, Weihua
  • Licensing Officer: Zinn, Ryan

Metal Matrix Composites Reinforced by High Entropy Alloys
TS-063364 — Experience the future of advanced materials—our metal matrix composites offer a revolutionary approach to meeting the demands of modern industries. Elevate your products, enhance performance, and reduce costs with our groundbreaking technology. For a closely related technology, please visit https://oied.osu.edu/find-technologies and type "T2017-051" in the search field.
In the aerospace, defense, and automotive industries, there is a pressing demand for advanced materials that combine low weight, high strength, exceptional wear resistance, and superior high-temperature performance. Traditional methods using ceramic particles as reinforcements in aluminum matrix c…
  • College: College of Engineering (COE)
  • Inventors: Luo, Alan; Huang, Xuejun; Zhang, Jianyue
  • Licensing Officer: Zinn, Ryan

Loading icon