# of Displayed Technologies: 3 / 3

Applied Category Filter (Click To Remove): Industrial Processes & Manufacturing


Categories

High Efficiency LED Designs Using Quantum Well Engineering
TS-057127 — Achieving high efficiency LEDs with green, amber and longer wavelengths using III-nitride/II-IV-nitride heterostructures as the active media.
Although extensive research and development over the past two decades has resulted in close to 100% external quantum efficiency (EQE) of InGaN based blue light emitting devices, efficiency of the longer visible wavelength emitting devices has remained relatively low. Spontaneous polarization origi…
  • College: College of Engineering (COE)
  • Inventors: Zhao, Hongping; Zhang, Kaitian
  • Licensing Officer: Randhawa, Davinder

U+RSW - A Break-Through Process for Dissimilar Metal Joining in Automotive Industries
TS-036907 — A welding technique that joins two dissimilar metals.
Resistance spot welding (RSW) is critical to automobile manufacturing, with 3,000 to 5,000 spot welds per vehicle. As consumers seek vehicles with better fuel economy, automobile manufacturers have replaced parts built from heavy metals, such as advanced high-strength steel (AHSS), with lighter al…
  • College: College of Engineering (COE)
  • Inventors: Zhang, Wei; Kimchi, Menachem; Lu, Ying "ying"; Mayton, Ellis
  • Licensing Officer: Zinn, Ryan

Method and Device to Monitor & Control Efficiency of the Friction Welding Process
TS-015293 — A device that can be readily attached to inertia or direct drive friction welding equipment to determine energy efficiency in-situ during welding, providing real-time feedback for improving control.
Friction welding is a category of solid-state welding processes that uses frictional heat generation at the weld interface to plasticize the work pieces and produce a metallurgical bond. The welding parameters used in large-scale industrial production are typically determined via trial and error. …
  • College: College of Engineering (COE)
  • Inventors: Zhang, Wei; Mahaffey, David; Semiatin, Sheldon; Senkov, Oleg; Tung, Daniel
  • Licensing Officer: Zinn, Ryan

Loading icon