# of Displayed Technologies: 7 / 7

Applied Category Filter (Click To Remove): Engineering & Physical Sciences


Categories

Aqueous Zn-Tetrazine Batteries
TS-064150 — The Need As the global demand for energy storage devices continues to surge, the limitations of conventional lithium-ion batteries become increasingly evident. Dwindling lithium reserves are unable to meet the burgeoning needs of modern society, necessitating the exploration of alternative solution…
  • College: College of Arts & Sciences
  • Inventors: Zhang, Shiyu; Walter, Christopher
  • Licensing Officer: Randhawa, Davinder

Metal Matrix Composites Reinforced by High Entropy Alloys
TS-063364 — Experience the future of advanced materials—our metal matrix composites offer a revolutionary approach to meeting the demands of modern industries. Elevate your products, enhance performance, and reduce costs with our groundbreaking technology. For a closely related technology, please visit https://oied.osu.edu/find-technologies and type "T2017-051" in the search field.
In the aerospace, defense, and automotive industries, there is a pressing demand for advanced materials that combine low weight, high strength, exceptional wear resistance, and superior high-temperature performance. Traditional methods using ceramic particles as reinforcements in aluminum matrix c…
  • College: College of Engineering (COE)
  • Inventors: Luo, Alan; Huang, Xuejun; Zhang, Jianyue
  • Licensing Officer: Zinn, Ryan

High Efficiency LED Designs Using Quantum Well Engineering
TS-057127 — Achieving high efficiency LEDs with green, amber and longer wavelengths using III-nitride/II-IV-nitride heterostructures as the active media.
Although extensive research and development over the past two decades has resulted in close to 100% external quantum efficiency (EQE) of InGaN based blue light emitting devices, efficiency of the longer visible wavelength emitting devices has remained relatively low. Spontaneous polarization origi…
  • College: College of Engineering (COE)
  • Inventors: Zhao, Hongping; Zhang, Kaitian
  • Licensing Officer: Randhawa, Davinder

Protecting Bluetooth Low Energy from Address Tracking When Using Whitelisting
TS-052807 — Bluetooth Low Energy (BLE) is ubiquitous today due to its extremely low energy consumption and relatively large communication coverage. However, the devices communicated through Bluetooth are subject to address tracking attacks, where a nearby attacker can associate Bluetooth addresses to particul…
  • College: College of Engineering (COE)
  • Inventors: LIN, ZHIQIANG; Zhang, Yue
  • Licensing Officer: Mess, David

Method to enhance light extraction efficiency in tunnel-injected III-Nitrate ultraviolet LEDs
TS-037365 — A novel method to enhance the transverse-electric and transverse-magnetic polarized light via relfective surfaces on top of a tunnel junction based LED structure.
III-Nitride ultraviolet light emitting diodes (UV LEDs) have a variety of promising applications, including sterilization and water purification. Currently, UV LEDs use an absorbing p-GaN top layer for hole injection, which reduces light extraction efficiency to lower than 20%. UV light emissions …
  • College: College of Engineering (COE)
  • Inventors: Rajan, Siddharth; Akyol, Faith; Jamal-Eddine, Zane; Zhang, Yuewei
  • Licensing Officer: Zinn, Ryan

U+RSW - A Break-Through Process for Dissimilar Metal Joining in Automotive Industries
TS-036907 — A welding technique that joins two dissimilar metals.
Resistance spot welding (RSW) is critical to automobile manufacturing, with 3,000 to 5,000 spot welds per vehicle. As consumers seek vehicles with better fuel economy, automobile manufacturers have replaced parts built from heavy metals, such as advanced high-strength steel (AHSS), with lighter al…
  • College: College of Engineering (COE)
  • Inventors: Zhang, Wei; Kimchi, Menachem; Lu, Ying "ying"; Mayton, Ellis
  • Licensing Officer: Zinn, Ryan

Method and Device to Monitor & Control Efficiency of the Friction Welding Process
TS-015293 — A device that can be readily attached to inertia or direct drive friction welding equipment to determine energy efficiency in-situ during welding, providing real-time feedback for improving control.
Friction welding is a category of solid-state welding processes that uses frictional heat generation at the weld interface to plasticize the work pieces and produce a metallurgical bond. The welding parameters used in large-scale industrial production are typically determined via trial and error. …
  • College: College of Engineering (COE)
  • Inventors: Zhang, Wei; Mahaffey, David; Semiatin, Sheldon; Senkov, Oleg; Tung, Daniel
  • Licensing Officer: Zinn, Ryan

Loading icon