# of Displayed Technologies: 7 / 7

Applied Category Filter (Click To Remove): Aerospace


Categories

Revolutionary Modular Nuclear Reactor Core for Space Exploration
TS-066252 — Rotating Fuel Core with Fuel Strip(s) ("ROFFUS") is an innovative modular nuclear reactor core designed to provide reliable and scalable power for advanced space missions.
Future space missions require dependable, high-output energy sources to support operations such as material processing, transportation, and thermal conditioning, particularly in challenging environments like the lunar poles where sunlight is scarce. This advanced nuclear reactor core features a…
  • College: College of Engineering (COE)
  • Inventors: Smidts, Carol; Aldemir, Tunc; Cao, Lei Raymond; Horack, John; Khafizov, Marat
  • Licensing Officer: Zinn, Ryan

Fluid Active Flow Control Enabled Variable Turbine Vane
TS-065423 — Turbine aircraft engines (jet engines) are a type of propulsion system commonly used in aviation. These engines operate on jet propulsion, where air is drawn into the engine, mixed with fuel, ignited, and then expelled at high speed to generate thrust. Jet engines are used in commercial and military aircraft, as well as helicopters.
While turbine aircraft engines offer higher efficiency and performance than their counterparts, there is still a need to improve efficiency and reduce fuel consumption and greenhouse gases. It’s estimated that jet engines account for over 2.5% of all CO2 emissions, and there are substantial …
  • College: College of Engineering (COE)
  • Inventors: Spens, Alexander; Bons, Jeffrey
  • Licensing Officer: Zinn, Ryan

Wind speed and direction measurement system
TS-063362 — Introducing our Low-Drag Smart Tether System—the future of fluid speed and direction measurement. Experience unmatched accuracy, energy efficiency, and reliability, revolutionizing how we perceive and utilize wind data in the modern age.
In the realm of aerial technology, the demand for accurate, low-cost wind monitors that are both scalable and efficient has never been higher. Traditional methods, such as pitot tubes and cup-and-vane anemometers, are marred by issues like icing vulnerability, high energy consumption, and unsuitab…
  • College: College of Engineering (COE)
  • Inventors: Dapino, Marcelo; Headings, Leon
  • Licensing Officer: Zinn, Ryan

Phasing of Turbine Engine Gearbox
TS-057725 — The angle at which the gears of a turbine engine are staggered can be manipulated to neutralize harmonic excitations produced by the engine.
The aviation industry is responsible for transporting over 4.5 billion people through 16 million flights in one year. Turbine engines contain a turbofan which has internal gears that are responsible for the internal vibrations an engine can experience. This harmonic excitation is responsible for t…
  • College: College of Engineering (COE)
  • Inventors: Kahraman, Ahmet; McCune, Michael
  • Licensing Officer: Zinn, Ryan

Out-of-Plane Fluidic Actuator for Curved Surface Applications
TS-050464 — Experience the future of fluidic control with our out-of-plane feedback-type fluidic oscillator. Revolutionize your engineering applications with unmatched precision, adaptability, and efficiency. Embrace innovation and elevate your industry standards with our groundbreaking bistable fluidic actuator design which uses naturally occurring fluid dynamic instabilities instead of moving parts to create an oscillating jet that is out-of-plane from the fluid inlet port. This inventive technology T2018-374 is just one part of a larger, comprehensive suite of fluidic oscillator technologies offered by The Ohio State University for licensing. To learn more about our other designs, please visit https://oied.osu.edu/find-technologies and search using the term: Fluidic Oscillator.
In the world of power generation and aerospace engineering, the limitations of traditional fluidic oscillators have hampered efforts to enhance turbine blade efficiency and airfoil performance. Current designs struggle to position oscillating jets effectively near the leading edge, where cooling a…
  • College: College of Engineering (COE)
  • Inventors: Hossain, Mohammad Arif "Arif"; Ameri, Ali; Bons, Jeffrey; Gregory, James "Jim"
  • Licensing Officer: Zinn, Ryan

Independent speed variable frequency generator for more electric aircraft using brushless doubly-fed machines (BDFM)
TS-050232 — Independent speed variable frequency generator for more electric aircraft using brushless doubly-fed machines (BDFM)
Technology continues to advance and with it, a push for higher performance of electrical components and devices, especially in the transportation industry. For example, in the past few decades, considerable efforts have been taken towards aircraft electrification. Traditional hydraulic and pneumat…
  • College: College of Engineering (COE)
  • Inventors: Zhang, Julia; Peng, Peng; Xu, Longya
  • Licensing Officer: Zinn, Ryan

DV8: The Spatial-Temporal Interactive Air Traffic Performance Visualization and Analysis Tool
TS-037833 — Optimization of air traffic infrastructure through efficient flight routing - reduces fuel cost, avoids adverse weather, improves "on-time" flight performance metrics.
America's air traffic control infrastructure has not been updated in decades and lags behind the rest of world. In lieu of a complete rebuild using GPS and digital messaging, other upgrades could be made to optimize the efficiency of flight routing. These types of upgrades would be software ba…
  • College: College of Engineering (COE)
  • Inventors: Young, Seth; Meyer, Nicholas; Nandi, Arnab
  • Licensing Officer: Zinn, Ryan

Loading icon