# of Displayed Technologies: 10 / 20

Applied Category Filter (Click To Remove): Energy, Earth, & Environmental


Categories

Synthetic approaches for mitigating battery capacity loss in oxide anodes
TS-066056 — The Need The advancement of lithium-ion battery technology relies heavily on increasing energy density, yet practical usage of silicon (Si) anodes faces challenges due to parasitic side reactions and active lithium consumption. Controlling lithium amounts precisely while achieving uniform distribut…
  • College: College of Arts & Sciences
  • Inventors: Co, Anne; Hwang, Jisun; Lorie Lopez, Jose
  • Licensing Officer: Randhawa, Davinder

Anode synthesis using spray pyrolysis
TS-066037 — The Need In the realm of materials science and energy storage, there's a growing demand for innovative anode synthesis methods that yield materials with improved mechanical and electrochemical properties. Traditional synthesis techniques often fall short in achieving the desired performance met…
  • College: College of Arts & Sciences
  • Inventors: Co, Anne; Lorie Lopez, Jose
  • Licensing Officer: Randhawa, Davinder

Metal nitric oxides redox flow batteries
TS-066016 — The Need Redox flow batteries (RFBs) offer a promising solution for storing intermittent renewable energy in the electrical grid. However, their reliance on finite and unsustainable transition metals, such as vanadium, poses significant sustainability challenges. The rising costs and environmental …
  • College: College of Arts & Sciences
  • Inventors: Zhang, Shiyu; Park, Jaehyun
  • Licensing Officer: Randhawa, Davinder

Designing High-Donicity Anions for Rechargeable Potassium Superoxide/Peroxide Batteries
TS-066015 — The Need Over the past two decades, the advancement of metal-O2 batteries has been hindered by issues of instability, reversibility, and poor energy efficiency, primarily due to the instability of superoxide in the presence of Li+ and Na+ ions. Existing solutions such as Li-O2 and Na-O2 batteries h…
  • College: College of Arts & Sciences
  • Inventors: Wu, Yiying
  • Licensing Officer: Randhawa, Davinder

Revolutionizing Hydrogen Production and CO2 Capture for a Sustainable Future
TS-065143 — The Need: In the face of pressing environmental concerns and the imperative for sustainable energy solutions, there arises a critical commercial need for systems and methods that can efficiently produce hydrogen (H2) while simultaneously capturing and converting carbon dioxide (CO2) emissions. Trad…
  • College: College of Arts & Sciences
  • Inventors: Baker, Lawrence "Robert"
  • Licensing Officer: Panic, Ana

A nitrogenase-like enzyme system that catalyzes methionine, ethylene, and methane biogenesis
TS-064265 — In industrial settings, the demand for safe and efficient methods of producing ethylene, ethane, and methane is paramount. Existing ethylene production processes often involve oxygen-dependent enzymes, resulting in a flammable ethylene-oxygen gas mixture. Moreover, methane and ethane, when mixed w…
  • College: College of Arts & Sciences
  • Inventors: North, Justin; Murali, Srividya; Tabita, Fred (Bob) "Bob"; Young, Sarah
  • Licensing Officer: Panic, Ana

Aqueous Zn-Tetrazine Batteries
TS-064150 — The Need As the global demand for energy storage devices continues to surge, the limitations of conventional lithium-ion batteries become increasingly evident. Dwindling lithium reserves are unable to meet the burgeoning needs of modern society, necessitating the exploration of alternative solution…
  • College: College of Arts & Sciences
  • Inventors: Zhang, Shiyu; Walter, Christopher
  • Licensing Officer: Randhawa, Davinder

Introducing Next-Gen Solid-State Electrolytes: Revolutionizing Energy Storage
TS-062369 — The Need: In the pursuit of large-scale energy storage solutions, potassium batteries with organic liquid electrolytes have emerged as promising candidates. However, the use of liquid electrolytes presents challenges such as dendritic metal plating and oxygen/sulfur crossover from the cathode. To ov…
  • College: College of Arts & Sciences
  • Inventors: Wu, Yiying; Zheng, Jingfeng
  • Licensing Officer: Randhawa, Davinder

Porous inorganic-organic material for removal of trace carbon dioxide from air or other gas streams
TS-059305 — A novel method in which nucleophilic transition metal hydroxide groups are generated at the internal pore surfaces of MOFs to facilitate selective gas-phase CO2 fixation at low pressures via formation of metal bicarbonate species.
Metal-organic frameworks (MOFs) are porous polymers constructed by self-assembly of organic and inorganic components. They have been extensively studied for gas storage and separation applications, and post-combustion CO2 capture under flue gas conditions has been a particularly intense area of st…
  • College: College of Arts & Sciences
  • Inventors: Wade, Casey; Bien, Caitlin; Cai, Zhongzheng
  • Licensing Officer: Dahlman, Jason "Jay"

Redox Relay Flow Batteries: hybrid systems for scalable, high-capacity batteries.
TS-050105 — This application relates generally to a novel redox relay flow batteries comprising redox-active solids configured to behave as storage materials and redox-active organic molecules configured to behave as energy shuttles.
The Need The growing global demand for electrical energy has increased research efforts towards the integration of renewable energy sources into the electrical grid. Generation of energy from petroleum-based sources dominates the current market, but dependence on renewable energy is expected to gro…
  • College: College of Arts & Sciences
  • Inventors: Sevov, Christo; Wong, Curt
  • Licensing Officer: Panic, Ana

Show More Technologies

Loading icon