# of Displayed Technologies: 7 / 7

Applied Category Filter (Click To Remove): Additive & Subtractive Manufacturing


Categories

Method for aligning multiple lasers using axial sensor data.
TS-054019 — This technology improves the additive manufacturing process by aligning the multiple lasers to one reference point. The reference laser provides real time feedback to the other lasers thereby minimizing seam defects resulting in a higher quality print. .tb_button {padding:1px;cursor:pointer;border-right: 1px solid #8b8b8b;border-left: 1px solid #FFF;border-bottom: 1px solid #fff;}.tb_button.hover {borer:2px outset #def; background-color: #f8f8f8 !important;}.ws_toolbar {z-index:100000} .ws_toolbar .ws_tb_btn {cursor:pointer;border:1px solid #555;padding:3px} .tb_highlight{background-color:yellow} .tb_hide {visibility:hidden} .ws_toolbar img {padding:2px;margin:0px}
The additive manufacturing (AM) market has been steadily growing and has recently surpassed the $10 billion in market revenue. To keep up with this demand for less expensive, larger parts, users are turning to multi-laser machines to scale the technology. Each machine has a coordinate system w…
  • College: College of Engineering (COE)
  • Inventors: Rindler, Jacob
  • Licensing Officer: Zinn, Ryan

Ultrasonically assisted wire additive manufacturing process and apparatus
TS-054013 — The ultrasonically assisted wire additive manufacturing process and apparatus is a new innovation that uses power ultrasound (UA) for benefits in processing molten metals. The UA energy is directly applied in the local deposition pool, which makes this new hybrid process applicable for building parts with any size and geometry.
Additive manufacturing (AM) is the process of 3D printing for industrial use. Instead of countertop devices printing small toys from plastic, industrial AM is used on a much larger scale to create engine blocks, plane components, and many other products made of metal alloys. AM is traditionally do…
  • College: College of Engineering (COE)
  • Inventors: Liu, Xun; Pfeifer, Eddie "Ed"; Wang, Tianzhao
  • Licensing Officer: Zinn, Ryan

Method for Preparing High-Energy Electrodes with Controlled Microstructures for Energy-Storage Devices
TS-052586 — A novel method for producing thick electrodes with controlled cracks to facilitate fast ionic transport and improve battery performance.
The Need Conventional electrodes for Li-ion batteries are prepared as thin layers of 70 to 100 microns to meet the power requirements of automotive applications. However, using thin electrodes compromises the energy densities of battery cells due to increasing weight and volume of inactive componen…
  • College: College of Engineering (COE)
  • Inventors: Kim, Jung Hyun; Rao, Lalith; Sayre, Jay
  • Licensing Officer: Randhawa, Davinder

Method for selective area doping of Gallium Nitride
TS-050625 — A method of selectively obtaining n- and p-type regions from the same III-Nitride layer deposited on a substrate without using diffusion or ion-implantation techniques.
According to IBIS World Reports, manufacturers of electronic components will likely refocus their production away from silicon-based products to wide bandgap (WBG) semiconductors, which are made of materials that have a wider bandgap than silicon. A bandgap, or energy gap, denotes the energy diffe…
  • College: College of Engineering (COE)
  • Inventors: Rajan, Siddharth; Chandrasekar, Hareesh; Rahman, Mohammad Wahidur "Wahidur"
  • Licensing Officer: Lawson, Ryan

Method for seamless joining and repair of metal parts using ultrasonic additive manufacturing
TS-050479 — This invention provides a method for repairing metal parts by removing and replacing worn, damaged, or defective metal material. It also serves as a method for seamlessly joining metal sheets and other parts while retaining the original temper of the joined parts. This technology, based on ultrasonic additive manufacturing (UAM), achieves strong joints and repairs by enabling the filling of a channel that has been cut, formed, or otherwise created in a metal structure or between two metal structures.
The aircraft industry requires robust methods for joining metal sheets, structures, and assemblies together in wings, fuselages, and engines. Fusion-based welding methods cannot always be used because they create heat-affected zones, which reduce the mechanical performance of material around the w…
  • College: College of Engineering (COE)
  • Inventors: Dapino, Marcelo; Gingerich, Mark; Headings, Leon
  • Licensing Officer: Zinn, Ryan

Integrally Joined Stainless Steel-NiTi Medical Devices
TS-050057 — A method for manufacturing surgical tools and implants with strong, gapless joints between NiTi (Nitinol) and stainless steel to capitalize on the best properties of both materials.
NiTi (Nitinol) is widely accepted and used for medical devices such as surgical tools and implants due to its biocompatibility and unique thermal-mechanical properties which provide super-elastic or shape memory responses. However, there are currently no commercial solutions for joining of NiTi to…
  • College: College of Engineering (COE)
  • Inventors: Panton, Boyd; Dapino, Marcelo; Gingerich, Mark; Headings, Leon; Morris, Jennifer
  • Licensing Officer: Zinn, Ryan

Process Monitoring of Internal Temperature Distribution of Powder Bed Fusion Parts
TS-047605 — An ensemble kamlan filter (EnKF) state observer algorithm and process monitoring method for more quickly and accurately estimating the internal temperature gradient of Powder Bed Fusion parts for enhanced process monitoring and control.
Powder Bed Fusion (PBF) is a subset of additive manufacturing processes that performs a layer-by-layer fabrication of metal components by selectively melting metal powder disbursed over the earlier layer. PBF processes encompass methods such as selective laser sintering (SLS), direct metal laser s…
  • College: College of Engineering (COE)
  • Inventors: Wood, Nathaniel; Hoelzle, David "David"
  • Licensing Officer: Zinn, Ryan

Loading icon