# of Displayed Technologies: 20 / 60

Applied Category Filter (Click To Remove): Industrial Processes & Manufacturing


Categories

Revolutionizing Pharmaceutical Synthesis: Advancements in Metal-Catalyzed Coupling Technology
TS-064824 — The Need In the pharmaceutical industry, the synthesis of complex organic substrates is crucial for the development of life-saving medications. However, traditional metal-catalyzed coupling reactions often face significant challenges when applied to these complex substrates, leading to high failure…
  • College: College of Arts & Sciences
  • Inventors: Sevov, Christo; Dinh, Long; Hamby, Taylor; Starbuck, Hunter
  • Licensing Officer: Willson, Christopher

Automatic Mechanical Assembly Loops/Stacks Detection
TS-064578 — This software solution revolutionizes the process of tolerance stack analysis in mechanical assemblies. It automatically detects and extracts tolerance stacks as the foundational step for precise tolerance analysis and schema generation.
This software solution revolutionizes the process of tolerance stack analysis in mechanical assemblies. It automatically detects and extracts tolerance stacks as the foundational step for precise tolerance analysis and schema generation. The Need Analyzing tolerance stacks in mechanical assembl…
  • College: College of Engineering (COE)
  • Inventors: Haghighi, Payam; Shah, Jami
  • Licensing Officer: Randhawa, Davinder

Variable Stiffness Robotic Gripper Based on Layer Jamming
TS-064318 — Introducing cutting-edge soft robotic grippers featuring variable stiffness through positive pressure layer jamming, revolutionizing object manipulation in diverse applications. For a closely related technology, please visit https://oied.osu.edu/find-technologies and type "T2020-092" in the search field.
Automation using robotics has taken many forms including, but not limited to, automotive manufacturing, transportation of good in shipping warehouses, and the delicate handling of wafers in semiconductor plants. In many of these applications grippers and end-of-arm-tools (EOAT’s) are incorpo…
  • College: College of Engineering (COE)
  • Inventors: Su, Haijun; Crowley, George; Zeng, Xianpai
  • Licensing Officer: Zinn, Ryan

Co-Axial Contained Electrospray Ionization Platform for Mass Spec.
TS-064299 — Mass spectrometry (MS) is used across a wide range of applications involving analytical chemistry. Various MS techniques, often coupled with liquid chromatography (LC), allow for detection of various chemical analytes, from drug metabolites, pesticides, food adulterants, and natural product extracts…
  • College: College of Arts & Sciences
  • Inventors: Badu-Tawiah, Abraham; Burris, Benjamin "Ben"; Grooms, Alex; Heiss, Derik; Kulyk, Dmytro
  • Licensing Officer: Willson, Christopher

Column-free Purification of Recombinant Proteins
TS-064270 — Large-scale recombinant proteins in Gram-negative bacteria (i.e., E. coli) are of significant interest in recombinant protein/enzyme production. These proteins exhibit wide-ranging applications, including food and beverages, conversion of carbohydrates into fuel ethanol or biodiesel, components for …
  • College: College of Arts & Sciences
  • Inventors: Gopalan, Venkat
  • Licensing Officer: Willson, Christopher

Apparatus and Method for Enhanced Determination of Optimal Operational Separation for Collaborative Robotic Systems
TS-063983 — Collaborative robotic systems, often referred to as cobots, represent a transformative advancement in industrial automation. Unlike traditional robots that are typically large, heavy, and designed to work in insolation behind safety barriers, cobots are designed to work alongside human operators c…
  • College: College of Food, Agricultural, and Environmental Sciences (CFAES)
  • Inventors: Tkach, Chris
  • Licensing Officer: Zinn, Ryan

Endoscopic additive manufacturing of biomaterials
TS-063919 — An articulating end effector for additive manufacturing that utilizes robot-assisted endoscopic surgery to implant synthetic tissues at local defects through “keyhole” incisions in patients. This innovative technology T2019-145 is part of a portfolio that also includes T2017-363. To learn more about both technologies, please visit https://oied.osu.edu/find-technologies and search using the phrase: Endoscopic additive manufacturing of biomaterials.
Robot-assisted surgery, tissue engineering, and additive manufacturing (AM) are emerging techniques in healthcare. Currently AM is used to develop synthetic tissues and organs, but open surgery is typically used to implant these scaffolds within the patient. This invasive procedure can subject pat…
  • College: College of Engineering (COE)
  • Inventors: Hoelzle, David; Asghari Adib, Ali; D'Souza, Desmond; Mansour, Daniel; Simeunovic, Andrej
  • Licensing Officer: Zinn, Ryan

Part 3 of 3: Fluidic Oscillators with Three-Dimensional Output
TS-063372 — Embark on a new era of fluidic control with our state-of-the-art three-dimensional fluidic oscillator technology. Experience precision, versatility, and efficiency like never before. Stay ahead of the curve and revolutionize your industry with our innovative solution. This inventive design is 1 of 3 aspects of technology T2019-309 and is just one part of a larger, comprehensive suite of fluidic oscillator technologies offered by The Ohio State University for licensing. To learn more about our other designs, please visit https://oied.osu.edu/find-technologies and search using the term: Fluidic Oscillator. To see a descriptive YouTube video of this technology, please visit: https://www.youtube.com/watch?v=g2Hn2q5W958.
In the realm of fluidic devices, the demand for a three-dimensional oscillating fluid stream has been a persistent challenge. Conventional fluidic oscillators, while efficient, produce a limited two-dimensional output. There is a critical commercial need for a fluidic oscillator that can break fre…
  • College: College of Engineering (COE)
  • Inventors: Tomac, Mehmet
  • Licensing Officer: Zinn, Ryan

Part 2 of 3: Fluidic Oscillators with Atomized Output
TS-063369 — Experience the future of atomization technology with our feedback type fluidic oscillator device with atomized output. Unlock unparalleled precision and efficiency in fluid dispersion, revolutionizing industries and setting new standards for atomized spray applications. This inventive design is 1 of 3 aspects of technology T2019-309 and is just one part of a larger, comprehensive suite of fluidic oscillator technologies offered by The Ohio State University for licensing. To learn more about our other designs, please visit https://oied.osu.edu/find-technologies and search using the term: Fluidic Oscillator. To see a descriptive YouTube video of this technology, please visit: https://www.youtube.com/watch?v=g2Hn2q5W958.
In the realm of fluid dynamics, there is a pressing commercial need for atomizing devices that can produce fine particles in all three dimensions. Current atomizers are limited, primarily offering two-dimensional sprays with little dispersion in the third dimension. Industries spanning from fuel i…
  • College: College of Engineering (COE)
  • Inventors: Tomac, Mehmet
  • Licensing Officer: Zinn, Ryan

Part 1 of 3: Fluidic Oscillators with Sweeping Jets and Multidirectional Output
TS-063350 — Experience the future of fluidic control—our sweeping jet device with multidirectional output sets a new standard in precision fluid distribution, offering reliability, efficiency, and innovation for diverse industrial applications. This inventive design is 1 of 3 aspects of technology T2019-309 and is just one part of a larger, comprehensive suite of fluidic oscillator technologies offered by The Ohio State University for licensing. To learn more about our other designs, please visit https://oied.osu.edu/find-technologies and search using the term: Fluidic Oscillator. To see a descriptive YouTube video of this technology, please visit: https://www.youtube.com/watch?v=g2Hn2q5W958.
In various industrial applications, the demand for versatile fluidic systems capable of delivering multidirectional sweeping outputs has become crucial. Traditional jet interaction-type fluidic oscillators, while efficient, face limitations when it comes to covering wide, multidirectional fields w…
  • College: College of Engineering (COE)
  • Inventors: Tomac, Mehmet
  • Licensing Officer: Zinn, Ryan

In situ damage free etching of Ga2O3 using Ga flux for fabricating high aspect ratio 3D structures
TS-062975 — With a high theoretical breakdown field strength, β-Ga2O3 has the potential to be useful in power switching and high frequency power amplifying devices. For any device technology to be competitive, damage free etching techniques are necessary. All current dry etching recipes in β-Ga2O3 h…
  • College: College of Engineering (COE)
  • Inventors: Rajan, Siddharth; Fiedler, Andreas; Kalarickal, Nidhin Kurian
  • Licensing Officer: Zinn, Ryan

Automated Endotracheal Intubation
TS-062900 — This cutting-edge technology redefines the intubation process by guiding the endotracheal tube into the airway with exceptional precision.
The Need Intubation is a critical medical procedure used to assist patients with breathing difficulties, executed through the insertion of an endotracheal tube (ET) into the windpipe. With over 313 million annual intubation procedures worldwide, ensuring first-pass success and minimizing complicati…
  • College: College of Engineering (COE)
  • Inventors: Ruegsegger, Mark; Elsayed-Awad, Hamdy; Hopping, Ethan; Lopez Vogler, Christian; Miles, Tim; Peiffer, Jordan
  • Licensing Officer: Bhatti, Hamid

pH-sensitive inhibitor release system for corrosion protection
TS-062835 — Coatings are broadly used to protect metallic structures from corrosion. However, aggressive acidic and alkaline conditions can both develop locally on the coated metal surface due to corrosion, leading to the failure of the coated structure. Commonly used smart coatings use a timed release of spe…
  • College: College of Engineering (COE)
  • Inventors: Li, Chao; Frankel, Gerald "Jerry"; Guo, Xiaolei
  • Licensing Officer: Zinn, Ryan

Heteroatom doped Carbon Nanostructures for Electrocatalytic Chlorine and Bromine Production
TS-062692 — Chlorine is used in production of many products, such as many polymers like polyvinyl chloride, polyurethanes and chloroaromatics. It is also used extensively in pharmaceuticals, pesticides, fiber optics, hypochlorite bleaches, and other commodities. However, the current method of producing chlori…
  • College: College of Engineering (COE)
  • Inventors: Ozkan, Umit; Jain, Deeksha; Mamtani, Kuldeep
  • Licensing Officer: Zinn, Ryan

Novel Efficient Butanol Production without CO2 Emission
TS-062607 — Chemicals and fuels from renewable resources have gained global interest due to environmental issues, climate change, oil price and supply volatility, and decreasing nonrenewable fossil fuel sources. Butanol is a biofuel alternative that can provide a higher heating value, lower volatility, polarity…
  • College: College of Engineering (COE)
  • Inventors: Yang, Shang-Tian "ST"
  • Licensing Officer: Willson, Christopher

Method and device for determining virus titer by surface enhanced Raman scattering
TS-062346 — The ability to rapidly identify and determine virus titer is of utmost importance in numerous biomedical applications, ranging from gene editing to pharmaceutical and vaccine development. In the context of lentiviruses, which are widely used for cell reprogramming in immunotherapies, knowing the e…
  • College: College of Arts & Sciences
  • Inventors: Schultz, Zachary; Morder, Courtney
  • Licensing Officer: Willson, Christopher

Rare Earth Element Trap-Extract-Precipitate (REE-TEP) Process
TS-061849 — The Rare Earth Element Trap-Extract-Precipitate (REE-TEP) process is a cost-effective and environmentally benign approach to recover rare earth elements (REEs) from acidic waste streams. It involves beneficial reuse of readily available industrial by-products and a naturally occurring organic ligand resulting in REE concentrate that can be commercially processed to produce rare earth oxides (REOs).
The Need Rare earth elements are critical components of many emerging technologies. Because conventional sources of REEs in the United States are limited, identifying alternative sources is important. Many mining and industrial waste streams have elevated concentrations of REEs and can be potential…
  • College: College of Engineering (COE)
  • Inventors: Cheng, Chin-Min "Jason"; Bielicki, Jeffrey "Jeff"; Butalia, Tarunjit; Lenhart, John
  • Licensing Officer: Randhawa, Davinder

Method for Preparing High-Energy Electrodes with Controlled Microstructures for Energy-Storage Devices
TS-061848 — The current manufacturing methods for Lithium-Ion Batteries are limited to around 200 Wh/kg. Power density is a factor of the battery construction and is highly dependent on the electrodes.
The Need Conventional Li-ion batteries consist of electrodes constructed of stacks of 70 µm films. The thin electrodes then require current collectors and separators for assembly, which increase mass without adding charge capacity. The need for these inactive components limits the power densi…
  • College: College of Engineering (COE)
  • Inventors: Kim, Jung Hyun; Rao, Lalith; Sayre, Jay
  • Licensing Officer: Randhawa, Davinder

Battery Discharge Simulator (Portfolio)
TS-061804 — A portfolio of technologies
The Need Battery design is becoming increasingly complex with the increased applications for electric vehicles and power storage for renewable energy such as solar and wind. Designers continue to pursue more efficient power designs with resilient characteristics to ensure long battery life over con…
  • College: College of Engineering (COE)
  • Inventors: Conlisk, Terrence "Terry"; Marcicki, James
  • Licensing Officer: Randhawa, Davinder

Dual ligand systems for cross-coupling of challenging C(sp2) and C(sp3) electrophiles.
TS-059018 — An unusual series of ligand exchange reactions establishes a dualcatalyst system for electroreductive alkyl-aryl cross-electrophile couplings of previously incompatible substrate combinations.
Cross-electrophile coupling (XEC) reactions of aryl and alkyl electrophiles are desirable methodologies for C–C bond formation but are limited to specific substrate classes. Couplings of widely-available electrophiles such as aryl chlorides or triflates are currently unknown with any alkyl b…
  • College: College of Arts & Sciences
  • Inventors: Sevov, Christo; Hamby, Taylor
  • Licensing Officer: Willson, Christopher

Show More Technologies

Loading icon