# of Displayed Technologies: 10 / 21

Applied Category Filter (Click To Remove): Industrial Processes & Manufacturing


Categories

Enhancing the mechanical performance of resistance spot welding of aluminum alloys to steel using chromium-rich Interlayers
TS-054040 — This is a new method of resistance spot welding of aluminum alloy and advanced high strength steel that creates a stronger bond by using a chromium-rich interlayer. The interlayer improves joint strength, ductility, and toughness compared to traditional methods.
Resistance welding is used to combine two metals at one point. This technique is used extensively in automotive manufacturing, combining an aluminum (Al) to an advanced high strength steel (AHSS) structure. Welding Al and AHSS together directly, however, does not create a high-quality bond, due to…
  • College: College of Engineering (COE)
  • Inventors: Ramirez, Antonio J.; Lara, Bryan; Reghine Giorjao, Rafael Arthur
  • Licensing Officer: Zinn, Ryan

Method for aligning multiple lasers using axial sensor data.
TS-054019 — This technology improves the additive manufacturing process by aligning the multiple lasers to one reference point. The reference laser provides real time feedback to the other lasers thereby minimizing seam defects resulting in a higher quality print. .tb_button {padding:1px;cursor:pointer;border-right: 1px solid #8b8b8b;border-left: 1px solid #FFF;border-bottom: 1px solid #fff;}.tb_button.hover {borer:2px outset #def; background-color: #f8f8f8 !important;}.ws_toolbar {z-index:100000} .ws_toolbar .ws_tb_btn {cursor:pointer;border:1px solid #555;padding:3px} .tb_highlight{background-color:yellow} .tb_hide {visibility:hidden} .ws_toolbar img {padding:2px;margin:0px}
The additive manufacturing (AM) market has been steadily growing and has recently surpassed the $10 billion in market revenue. To keep up with this demand for less expensive, larger parts, users are turning to multi-laser machines to scale the technology. Each machine has a coordinate system w…
  • College: College of Engineering (COE)
  • Inventors: Rindler, Jacob
  • Licensing Officer: Zinn, Ryan

Ultrasonically assisted wire additive manufacturing process and apparatus
TS-054013 — The ultrasonically assisted wire additive manufacturing process and apparatus is a new innovation that uses power ultrasound (UA) for benefits in processing molten metals. The UA energy is directly applied in the local deposition pool, which makes this new hybrid process applicable for building parts with any size and geometry.
Additive manufacturing (AM) is the process of 3D printing for industrial use. Instead of countertop devices printing small toys from plastic, industrial AM is used on a much larger scale to create engine blocks, plane components, and many other products made of metal alloys. AM is traditionally do…
  • College: College of Engineering (COE)
  • Inventors: Liu, Xun; Pfeifer, Eddie "Ed"; Wang, Tianzhao
  • Licensing Officer: Zinn, Ryan

Method for Preparing High-Energy Electrodes with Controlled Microstructures for Energy-Storage Devices
TS-052586 — A novel method for producing thick electrodes with controlled cracks to facilitate fast ionic transport and improve battery performance.
The Need Conventional electrodes for Li-ion batteries are prepared as thin layers of 70 to 100 microns to meet the power requirements of automotive applications. However, using thin electrodes compromises the energy densities of battery cells due to increasing weight and volume of inactive componen…
  • College: College of Engineering (COE)
  • Inventors: Kim, Jung Hyun; Rao, Lalith; Sayre, Jay
  • Licensing Officer: Randhawa, Davinder

Method for selective area doping of Gallium Nitride
TS-050625 — A method of selectively obtaining n- and p-type regions from the same III-Nitride layer deposited on a substrate without using diffusion or ion-implantation techniques.
According to IBIS World Reports, manufacturers of electronic components will likely refocus their production away from silicon-based products to wide bandgap (WBG) semiconductors, which are made of materials that have a wider bandgap than silicon. A bandgap, or energy gap, denotes the energy diffe…
  • College: College of Engineering (COE)
  • Inventors: Rajan, Siddharth; Chandrasekar, Hareesh; Rahman, Mohammad Wahidur "Wahidur"
  • Licensing Officer: Lawson, Ryan

Method for seamless joining and repair of metal parts using ultrasonic additive manufacturing
TS-050479 — This invention provides a method for repairing metal parts by removing and replacing worn, damaged, or defective metal material. It also serves as a method for seamlessly joining metal sheets and other parts while retaining the original temper of the joined parts. This technology, based on ultrasonic additive manufacturing (UAM), achieves strong joints and repairs by enabling the filling of a channel that has been cut, formed, or otherwise created in a metal structure or between two metal structures.
The aircraft industry requires robust methods for joining metal sheets, structures, and assemblies together in wings, fuselages, and engines. Fusion-based welding methods cannot always be used because they create heat-affected zones, which reduce the mechanical performance of material around the w…
  • College: College of Engineering (COE)
  • Inventors: Dapino, Marcelo; Gingerich, Mark; Headings, Leon
  • Licensing Officer: Zinn, Ryan

Out-of-Plane Fluidic Actuator for Curved Surface Applications
TS-050464 — A novel bistable fluidic actuator design which uses naturally occurring fluid dynamic instabilities instead of moving parts to create an oscillating jet that is out-of-plane from the fluid inlet port.
Turbines are used to produce much of the world’s electricity, whether it be from nuclear, coal, or natural gas sources, as well as provide power for the vast majority of aircraft flying today. For many turbine applications, the first stage vane and blade just downstream of the combustor is a…
  • College: College of Engineering (COE)
  • Inventors: Hossain, Mohammad Arif "Arif"; Ameri, Ali; Bons, Jeffrey; Gregory, James "Jim"
  • Licensing Officer: Zinn, Ryan

Integrally Joined Stainless Steel-NiTi Medical Devices
TS-050057 — A method for manufacturing surgical tools and implants with strong, gapless joints between NiTi (Nitinol) and stainless steel to capitalize on the best properties of both materials.
NiTi (Nitinol) is widely accepted and used for medical devices such as surgical tools and implants due to its biocompatibility and unique thermal-mechanical properties which provide super-elastic or shape memory responses. However, there are currently no commercial solutions for joining of NiTi to…
  • College: College of Engineering (COE)
  • Inventors: Panton, Boyd; Dapino, Marcelo; Gingerich, Mark; Headings, Leon; Morris, Jennifer
  • Licensing Officer: Zinn, Ryan

Transition Metal Free Alkyne Hydrogenation and Semihydrogenation Catalysts
TS-048726 — Novel, transition metal-free catalysts capable of alkyne hydrogenation and semihydrogenation under modest conditions.
The Need Numerous industrial processes require alkyne semihydrogenation or hydrogenation reactions. For example, hydrogenation is necessary for the industrial-scale synthesis vitamin A, the creation of high molecular weight polymers, and the processing of petroleum into functionally useful derivati…
  • College: College of Arts & Sciences
  • Inventors: Goldberger, Joshua; Hodge, Kelsey
  • Licensing Officer: Lawson, Ryan

Capacitive Sensing Method for Integrated Circuit Identification and Authentication
TS-048641 — A method of authenticating an IC die’s origin and uniquely identifying each die with an intrinsic unclonable value through measurement of on-chip capacitance values
Hardware security in Integrated Circuit (IC) designs is of increasing importance in dealing with the insecure, expanding global supply chain of these parts. The ability to trace the origin of a die, combined with the capability to uniquely identify each die provides valuable quantitative measures …
  • College: College of Engineering (COE)
  • Inventors: Khalil, Waleed; Kines, Michael
  • Licensing Officer: Lawson, Ryan

Show More Technologies

Loading icon